Эту свою ошибку мы и исправляемъ въ самомъ концѣ, отчеркивая у отвѣта тысячу. Если бы намъ данъ былъ примѣръ 34985322— 12467876, то вычисленіе получилось бы такое: 2+4=6, 2+2=4, 3+1=4, 5+2=7, 8+3=11, изъ этого лѣвая единица скидывается, 9+6=15, 4+8=12, 9+3=12, всѣ лѣвыя единины окидываются. Если нужно дѣйствіе производить поскорѣе, то лучше точки ставить не надъ уменьшаемымъ, а надъ вычитаемымъ. И вообще этотъ пятый способъ напоминаетъ собою второй епособъ тѣмъ, что занимаемую единицу можно считать приложенной къ вычитаемому, а не отнятой отъ уменьшаемаго.
Таблица умноженія
Твердое знаніе таблицы умноженія издавна требовалось отъ учениковъ и считалось совершенно необходимымъ. Составителемъ таблицы называютъ греческаго математика Пиѳагора или, вѣрнѣе, одного изъ его позднѣйшихъ учениковъ, новопиѳагорейца Никомаха (въ I ст. по Р. X.). Начиная съ Никомаха ни одинъ авторъ не забываетъ напоминать, что «преимущественно передъ всѣмъ слѣдуетъ хорошо знать таблицу». Авторы старинныхъ русскихъ математнческихъ сборниковъ также помѣщаютъ таблиду, или «границу умножалную» подъ титуломъ «граница изустная большему счету разумъ подаетъ хотящему въ нея зрѣти»; они тоже требуютъ заучиванія: «надобе сіи изустныя слова памятовати и въ памяти крѣпко держати, всегда во устѣхъ обносити, чтобы во умѣ незабыты были». Вотъ стихи изъ Магницкаго:
Въ римскихъ школахъ таблицу заучивали хоромъ на распѣвъ. Въ нашихъ современныхъ учебникахъ по ариѳметикѣ таблица умноженія содержитъ въ себѣ обыкновенно произведенія всѣхъ однозначныхъ чиселъ, начиная съ 2×2 и кончая 9×9. Въ средніе вѣка смотрѣли на это дѣло иначе; тогда и въ ариѳметикѣ, и въ другихъ наукахъ давали большой просторъ памяти, а поэтому заучиваніе примѣняли широко; требованія въ этомъ отношеніи простирались такъ далеко, что ученики обязаны были запоминать произведенія всѣхъ первыхъ сорока чиселъ на однозначныхъ множителей, слѣдовательно 360 произведеній, кромѣ того, квадраты всѣхъ чиселъ, выраженныхъ полными десятками, кончая 90X90, и произведенія всѣхъ однозначныхъ чиселъ на полные десятки, кончая 9×90. Всего набирается болѣе 400 произведеній. И такую-то массу должна была поглотить память учащихся! Сколько же труда и сколько времени надо было истратить на это! Вѣдь учили прямо наизусть, безъ всякихъ разъясненій и въ громадномъ большинствѣ случаевъ безъ всякаго пониманія. Трудно и теперь ребятамъ, когда ихъ заставляютъ заучивать таблицу умноженія, не напрактиковавши ихъ, какъ она составляется; но неизмѣримо труднѣе приходилось ученивамъ средневѣковой школы, въ которой требовали гораздо больше, а давали гораздо меньше.[7]
Римляне, чтобы облегчить себѣ перемноженіе чиселъ, содержащихъ много разрядовъ, пользовались длиннѣйшими таблицами умноженія, въ которыхъ множителями служили всѣ числа до извѣстнаго предѣла. Съ такими таблицами—ихъ, конечно, не заучивали, а только держали всегда записанными подъ рукой—римляне довольно быстро вычисляли сложныя и трудныя произведенія.
Письменно таблица представляется въ различныхъ формахъ. Изъ нихъ самая общеизвѣстная—Пиѳагорова таблица; ея мы не помѣщамъ, она есть въ каждомъ учебникѣ. Но есть еще фигура треугольника.
Французскій математикъ Chuquet (1484 г.) представляетъ таблицу умноженія въ такой формѣ: