Происхожденіе нашихъ цифръ
Тѣ цифры, которыя употребляются въ настоящее время почти всѣми образованными народами и которыми пользуемся также и мы, называются обыкновенно арабскими; но это названіе онѣ получили вовсе не потому, что обязаны своимъ происхожденіемъ арабамъ: арабы ихъ только принесли въ Евроиу, а начало имъ дали, по всей вѣроятности, индусы.
Дѣйствительныя, подлинныя арабскія цифры не имѣютъ никакого отношенія къ нашимъ, которыми мы пользуемся теперь. Прежде всего надо сказать, что первоначальное письмо арабовъ было грубо и некрасиво, и едва ли до VII в. по Р. X. были у нихъ какія-нибудь цифры. Только со временъ Магомета, когда сразу былъ данъ чрезвычайный толчекъ развитію арабскаго могущества и образованности, стало у нихъ процвѣтать и письмо. Арабы особенно любили выражать числа такъ, чтобы писать полныя числительныя имена; отсюда естественно вытекаетъ, что съ теченіемъ времени они перешли къ первымъ буквамъ числительныхъ именъ; впослѣдствіи, подобно грекамъ, они стали примѣнять буквы въ алфавитномъ порядкѣ.
Около 773 года по Р. X. арабы приняли индусскую систему цифръ и стали обозначать числа такъ, какъ ихъ обозначали индусы. Сдѣлать это было тѣмъ болѣе легко и естественно, что Индія граничила съ владѣніями арабскихъ халифовъ, и между сосѣдями постоянно были близкія сношенія и торговыя, и научныя.
Заслуга индусовъ въ развитіи ариѳметики громадна и неисчислима. Во-первыхъ, они сильно уменьшили количество цифръ и довели его до 10, считая въ томъ числѣ и нуль; между тѣмъ, у грековъ, у евреевъ, у сирійцевъ и т. д. цифръ было не менѣе 27; правда, римляне умѣли обходиться 7-ю цифрами, но за то у нихъ была маса мелкихъ значковъ, которые только спутывали и мѣшали. Во-вторыхъ въ индусской системѣ ясно проглядываетъ необыкновенная простота, точность и объединенность: каждый разрядъ выражается обязательноі одной цифрой, а не нѣсколькими; значеніе цифры легко угадать по мѣсту, которое она занимаетъ, и не надо задумываться ни надъ сложеніемъ, ни надъ вычитаніемъ сосѣднихъ знаковъ, какъ это бываетъ въ другихъ системахъ; кромѣ того, десятки, сотни, тысячи и милліоны и высшіе разряды пишутся точно такъ же, какъ простыя единицы, поэтому не надо изобрѣтать особенныхъ правилъ для высшихъ разрядовъ, а можно безконечно прилагать одно и то-же правило. Всѣ эти выгоды настолько ясны и безспорны, что всякій народъ, какъ только ознакомится со способомъ индусовъ и пойметъ его, то перемѣняетъ свою систему на ихъ систему. Такъ было и съ арабами, и съ Западной Европой, и съ нами русскими.
Главное преимущество индусской системы заключается въ томъ, что значеніе каждой цифры вполнѣ опредѣляется ея мѣстомъ, т.-е. если, наприм., цифра стоитъ на 4-мъ мѣстѣ справа, то она выражаетъ тысячи, и, слѣд., чтобы написать тысячу, надо только поставить цифру 1 на 4-е мѣсто, но не перемѣнять ея формы и не припиеывать какого-нибудь особеннаго слова или значка. Въ глубокой древности встрѣчались и среди иныхъ народовъ геніальные умы, которые какъ-то смутно догадывались, что значеніе цифры лучше всего опредѣляетсяется мѣстомъ, но всѣ они становились въ тупикъ передъ такимъ сомнѣніемъ: а какъ же быть, если какой-нибудь разрядъ въ числѣ пропущенъ, напр., если число состоитъ только изъ единицъ и сотенъ и не содержитъ десятковъ? Чѣмъ замѣщать недостающіе разряды? Индусы отвѣчали коротко и ясно: надо замѣщать нулемъ. И мы теперь, когда отвѣтъ извѣстенъ, пожалуй, удивляемся, чего тутъ труднаго, и какъ же было не смекнуть; но жизнь доказываетъ лучше всякихъ словъ, что самыя простыя и общія идеи всегда и самыя мудреныя. Вотъ что говоритъ относительно этого извѣстный французскій математикъ Лапласъ:
«Мысль выражать всѣ числа 9-ю знаками, придавая имъ, кромѣ значенія по формѣ, еще значеніе по мѣсту, настолько проста, что именно изъ-за этой простоты трудно понять, насколько она удивительна. Какъ нелегко было прійти къ этой методѣ—мы видимъ ясно на примѣрѣ величайшихъ геніевъ греческой учености, Архимеда и Аполлонія, для которыхъ эта мысль осталась скрытой».