Читаем Как освоить радиоэлектронику с нуля полностью

Данная конструкция не имеет полной изоляции от сети, поэтому во время ее работы не дотрагивайтесь до деталей. Помните о правилах безопасности! При отрицательной полуволне сетевого напряжения на верхнем (по схеме) проводе диод VD1 откроется, и через него будут заряжаться конденсаторы С1 и С2. При положительных же полуволнах конденсаторы станут перезаряжаться, ток потечет в первую очередь через открытый диод VD2, и начнут подзаряжаться аккумулятор G1 и конденсатор СЗ. Напряжение полностью заряженного аккумулятора будет не менее 1,35 В, а на светодиоде HL1 — около 2 В. Поэтому светодиод начнет открываться и тем самым ограничивать зарядный ток аккумулятора. Следовательно, аккумулятор постоянно будет в заряженном состоянии. Резистор R1 служит для разрядки конденсаторов С1 и С2 при отключении устройства от сети.

Конденсаторы С1 и С2 должны быть пленочными и рассчитаны на номинальное напряжение не менее 300 В, СЗ — электролит (желательно танталовый, который сможет достаточно долго держать энергию). Диоды VD1 и VD2 — любые выпрямительные малогабаритные. Светодиод HL1 надо брать такой, у которого прямое напряжение при токе 10 мА составит 1,9–2,1 В. Аккумулятор — никель-кадмиевый Д-0.1, лучше — Д-0.125.

Подсветка для выключателя

Наверное, многие сталкивались с тем, что, приходя вечером домой, в полной темноте начинали искать в коридоре выключатель, чтобы зажечь свет и не задеть при этом какой-нибудь предмет. Данная схема (рис. 10.4) позволяет решить эту проблему. Теперь ваш выключать будет подсвечиваться при выключенном состоянии, а при включенном подсветка будет гаснуть. Самоделка постоянно питается от сети, но при этом не потребляет много электроэнергии и совершенна безопасна.

Рис. 10.4.Принципиальная схема подсветки для выключателя.

Схема предлагаемого устройства собрана на основе двух деталей: неоновой лампы L2 и резистора R1. При выключенном светильнике ток проходит через нить накала его (светильника) лампы L1 и через сопротивление R1, на котором гаситься больше половины напряжение, и поступает на неонку L2, которая светиться при этом. Как только контакты выключателя S1 замыкаются, неонка гаснет и включается светильник в коридоре.

Неоновую лампу можно брать любую, но лучше импортного производства (она меньше размером). Сопротивление может отличаться от номинального, от него зависит яркость свечения неонки: чем больше сопротивление, тем меньше яркость и наоборот. Важно, чтобы ваттность сопротивления резистора была не меньше 0,25 Вт (на схеме 0,5 Вт). Устройство подключается параллельно контактам выключателя и размещается прямо в нем. Где сделать отверстие для неонки в выключателе, решать вам. Будьте предельно внимательны при сборке устройства! Перед подключением самоделки к электричеству попросите кого-нибудь из взрослых проверить правильность всех соединений.

Регулятор яркости светильника

Регуляторы яркости свечения электроосветительных приборов все чаще применяются в домашнем обиходе, и это не случайно. Взять, к примеру, бра: если этот настенный светильник снабдить таким регулятором, то его можно использовать в качестве ночника.

Любительский регулятор яркости, схему которого вы видите на рис. 10.5, позволяет это осуществить. Кроме того, он обеспечивает плавное нарастание яркости свечения электролампы до заранее установленного уровня в течение 5-10 с.

Рис. 10.5.Принципиальная схема регулятора яркости светильника.

Такой режим включения светильников продлевает срок службы электроламп. В предлагаемом устройстве используется так называемый фазоимпульсный способ регулирования среднего тока через нагрузку. Он изменяется благодаря тому, что нагрузка-светильник подключается к сети электронным ключом через некоторое время после появления очередной полуволны сетевого напряжения. Функцию электронного ключа выполняет тринистор VS1. Мощность, потребляемую нагрузкой от сети, можно регулировать практически от нуля до максимума, изменяя это время. Для лампы светильника это означает изменение яркости ее свечения. Ручная регулировка яркости свечения лампы L1 (светильника) осуществляется переменным резистором R4: чем меньше его сопротивление, тем ярче светится лампа.

Все резисторы берите на 0,25 Вт, кроме R8 (2 Вт). При монтаже расположите этот резистор в 2 мм над поверхностью платы, чтобы не нагревались остальные детали. Конденсатор С1 — пленочный, тринистор КУ202Л можно заменить на КУ202К, КУ202М или КУ202Н. Соблюдайте условия его включения в схеме. Цоколевку транзисторов серий КТ315, КТ361 и тринистора КУ202 вы можете увидеть на рис. 10.6.

В корпусе, где вы поместите устройство, обязательно просверлите отверстия для вентиляции, так как элементы R8 и VS1 немного нагреваются в процессе работы.

Рис. 10.6.Цоколевка:

а — транзисторов серий КТ315, КТ361; б — тринистора КУ202

Фазометр своими руками
Перейти на страницу:

Все книги серии В помощь радиолюбителю

Самоучитель по радиоэлектронике
Самоучитель по радиоэлектронике

Вы держите в руках книгу, которая представляет собой сборник практических рекомендаций и советов по проектированию, изготовлению и наладке аналоговых и цифровых электронных устройств различного назначения. Каждый читатель в соответствии со своим уровнем подготовки сможет почерпнуть в данной книге рекомендации по выбору и применению стандартных и специализированных радиоэлектронных компонентов, разработке и использованию электрических схем, советы по изготовлению и монтажу печатных плат. В книге приведены основные принципы конструирования и приемы сборки радиоэлектронных устройств, порядок тестирования компонентов, проведения измерений в электрических схемах и ремонта устройств.Книга рассчитана на читателя с техническим складом ума, которому уже приходилось собирать электронные устройства, и адресована широкому кругу радиолюбителей, как профессионалам, так и начинающим.

Михаил Николаевич Николаенко

Техника / Радиоэлектроника
Как освоить радиоэлектронику с нуля
Как освоить радиоэлектронику с нуля

Если у вас есть огромное желание дружить с электроникой, если вы хотите создавать свои самоделки, но не знаете, с чего начать, — воспользуйтесь самоучителем «Как освоить радиоэлектронику с нуля. Учимся собирать конструкции любой сложности». Эта книга поможет модернизировать и дополнить некоторые основные схемы. Вы узнаете, как читать принципиальные схемы, работать с паяльником, и создадите немало интересных самоделок.Вы научитесь пользоваться измерительным прибором, разрабатывать и создавать печатные платы, узнаете секреты многих профессиональных радиолюбителей. В общем, получите достаточное количество знаний для дальнейшего освоения электроники самостоятельно. Книга также содержит небольшой справочник по радиодеталям, который, возможно, будет интересен и профессионалам.Данный учебник написан доступным и простым языком, без лишней литературной лирики. Чтобы познакомить юных радиолюбителей с электричеством и различными величинами измерения, использован элементарный метод сравнения. Рядом с каждой принципиальной схемой — изображение с внешним видом и цоколевкой (расположение выводов) радиодеталей. Все подробно описано, иногда представлен монтаж того или иного устройства, чтобы визуально можно было увидеть, что же должно получиться.

В. В. Дригалкин , Владимир Владимирович Дригалкин

Сделай сам / Техника / Радиоэлектроника / Дом и досуг
Как превратить персональный компьютер в измерительный комплекс
Как превратить персональный компьютер в измерительный комплекс

Книга Патрика Гёлля «Как превратить персональный компьютер в измерительный комплекс» позволяет создать на базе IBM PC-совместимого персонального компьютера систему сбора и обработки информации о различных физических процессах. Тем самым ПК превращается в мощный измерительный прибор. Область применения виртуального измерительного комплекса шире, чем у обычного измерительного прибора, поскольку виртуальный комплекс можно перепрограммировать и оптимизировать для конкретных задач.В книге рассказывается о создании системы сбора и обработки данных, состоящей из датчиков физических величин (тока, давления, температуры и т. д.), интерфейсного устройства (как правило, аналого-цифрового преобразователя) и программных средств, позволяющих обрабатывать и интерпретировать собранную информацию. Схемы и рекомендации, приведенные в книге, позволяют собрать все рассмотренные устройства самостоятельно. Программное обеспечение и драйверы устройств, находящиеся на сервере www.dmk.ru, позволяют сразу перейти к разработке информационной системы, даже если у вас нет практических навыков в области радиоэлектроники. Современные технические и программные решения, предлагаемые автором книги, надежны и проверены на практике. Они, без сомнения, будут полезны всем, кто разрабатывает дешевые и экономичные системы сбора и обработки информации.Книга предназначена для специалистов в различных областях (радиоэлектроника, акустика, геофизика, термодинамика и т. д.) и радиолюбителей, а также для преподавателей физики и информатики школ и высших учебных заведений.

Патрик Гёлль

Техника / Радиоэлектроника / Прочая компьютерная литература / Книги по IT

Похожие книги