Де Муавра не удовлетворял закон больших чисел, гласивший, что в долгосрочной перспективе доля аверсов в последовательности подбрасываний монет все больше приближается к 50 %. Он хотел знать,
Если подбрасывать десяток монет, вы получите такую последовательность:
1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 0, 4, 2, 0, 2, 1, 0, 2, 2, 4…
Если подбрасывать сотню монет, последовательность выглядит так:
4, 4, 2, 5, 2, 1, 3, 8, 10, 7, 4, 4, 1, 2, 1, 0, 10, 7, 5…
А в случае тысячи монет будет получена такая последовательность:
14, 1, 11, 28, 37, 26, 8, 10, 22, 8, 7, 11, 11, 10, 30, 10, 3, 38, 0, 6…
Как видите, отклонения от 50 на 50 в абсолютном выражении становятся больше по мере увеличения количества подбрасываний монет, хотя (как того требует закон больших чисел) эти отклонения становятся меньше в случае относительной доли монет, выпавших той или иной стороной. Де Муавр пришел к выводу, что типичное отклонение[69] зависит от
Наблюдение де Муавра совпадает с концепцией, лежащей в основе расчетов стандартной погрешности в результатах политического опроса. Если вы хотите сократить уровень погрешности в два раза, вам необходимо опросить в четыре раза больше людей. Но если вы хотите знать, как правильно оценить довольно большое количество выпавших аверсов, можно определить, на сколько квадратных корней из числа попыток данное значение отклоняется от 50 %. Квадратный корень из 100 равен 10. Следовательно, если я получил 60 аверсов за 100 попыток, это и есть отклонение на один квадратный корень от распределения 50 на 50. Квадратный корень из 1000 равен почти 31; следовательно, если я получил 538 аверсов за 1000 попыток, значит, мне удалось совершить нечто еще более удивительное, хотя во втором случае я получил всего 53,8 % аверсов, тогда как в первом случае – 60 %.
Однако де Муавр еще не поставил точку в своих изысканиях. Он обнаружил, что в долгосрочной перспективе отклонения от 50 на 50 всегда стремятся сформировать идеальную колоколообразную кривую, которую мы называем нормальным распределением. Основоположник статистики Фрэнсис Исидор Эджуорт предложил называть эту кривую
Колоколообразная кривая («шлем жандарма») высокая посередине и плоская по краям; другими словами, чем дальше отклонение от нуля, тем меньше вероятность такого отклонения. Это можно точно представить в количественной форме. Если вы подбрасываете
Возникает ощущение, будто нечто