Диаграмма «петушиный гребень» и диаграмма разброса согласуются с нашими когнитивными способностями: мозг человека плохо воспринимает столбцы чисел, но прекрасно справляется с анализом закономерностей и данных, представленных в двумерном поле зрения.
В некоторых случаях это не вызывает никаких трудностей. Предположим, например, что каждый сын и отец имеют
Обратите внимание, что плотность точек больше у середины и меньше у концов графика; это означает, что количество мужчин ростом 176 сантиметров больше количества мужчин ростом 185 сантиметров и 163 сантиметра.
Что происходит в противоположном случае, когда рост сыновей никак не связан с ростом отцов? При таком варианте диаграмма разброса выглядела бы так:
На этом рисунке, в отличие от предыдущего, нет смещения точек в сторону диагонали. Если вы обратите внимание только на сыновей, у отцов которых рост 185 сантиметров (вертикальный срез в правой части диаграммы разброса), точки, соответствующие росту сыновей, по-прежнему сосредоточены в области 176 сантиметров. Будем говорить, что
Однако диаграмма разброса Гальтона не похожа ни на один из этих крайних случаев. Напротив, она представляет собой нечто среднее между ними:
Что представляет собой на этом графике средний рост сына отца, рост которого 185 сантиметров? Я нарисовал вертикальный срез, чтобы показать, какие точки на диаграмме разброса соответствуют этим парам «отец – сын».
Как видите, в срезе «отец ростом 185 сантиметров» концентрация точек под диагональю больше, чем над ней, а значит, сыновья в среднем ниже ростом, чем их отцы. С другой стороны, они явно выше 175 сантиметров, роста обычного мужчины. В массиве данных, которые я отобразил на этом графике, средний рост этих сыновей составляет около 183 сантиметров, то есть они выше среднего роста, но не такие высокие, как отцы. Вы смотрите сейчас на
Гальтон сразу заметил, что его диаграммы разброса, полученные как результат взаимодействия между наследственностью и случаем, имеют далеко не случайную геометрическую структуру. Создавалось впечатление, что все они в той или иной мере заключены в эллипс с центром в точке, в которой отцы и дети имеют одинаковый средний рост.
Эту наклонную эллиптическую форму можно обнаружить даже в первичных данных, представленных в таблице из работы Гальтона «Регрессия к посредственности на примере наследуемого роста», опубликованной в 1886 году: обратите внимание на фигуру, которую образуют отличные от нуля числа в этой таблице. Кроме того, из таблицы становится ясно, что я не все рассказал о совокупности данных Гальтона. В частности, его ось