В июле 1925 г. английский ученый В. Фриенд отправился в Палестину. «Земля обетованная» привлекала его отнюдь не по религиозным соображениям. Он не был ни археологом, ни туристом, путешествующим в поисках экзотических мест. В. Фриенд был просто-напросто химиком, и его багаж составляло в основном множество самых обычных склянок, куда ученый намеревался собирать пробы воды Мертвого моря. По концентрации растворенных солей Мертвое море почти не имеет себе равных среди водоемов земного шара. Рыба в нем не живет, человек может плавать в его водах, не рискуя утонуть, — так велика плотность этих вод.
Безрадостные библейские ландшафты не омрачали настроения В. Фриенда. Он верил в успех, а цель его состояла в том, чтобы обнаружить в водах Мертвого моря экаиод и экацезий, которые химикам никак не удавалось поймать. Ведь в солях, растворенных в морской воде, много щелочных металлов и галогенов; в Мертвом море их должно быть особенно много. И тем больше вероятность, что среди них, пусть в ничтожных количествах, затерялись неизвестные элементы — самый тяжелый галоген и самый тяжелый щелочной металл.
В. Фриенд, конечно, не был оригинален в выборе направления поисков. Еще в конце XIX в. химик не затруднился бы ответить на вопрос, где искать экаиод и экацезий в земной коре. Конечно же там, где встречаются в природе соединения щелочных металлов и галогенов: в залежах калийных солей, в морских и океанских водах, в различных минералах, в водах буровых скважин, в некоторых морских водорослях — словом, объектов для поисков было более чем достаточно.
Но более чем достаточно оказалось и неудачных попыток обнаружить экаиод и экацезий. И усилия В. Фриенда лишь разделили судьбу прежних безуспешных попыток.
Перенесемся в последние десятилетия прошлого века. Когда Д. И. Менделеев разработал периодическую систему элементов, то выяснилось, что в ней между висмутом и ураном существует много пробелов, соответствующих неизвестным элементам. Эти пробелы стали быстро заполняться после обнаружения явления радиоактивности. Встали на свои места полоний и радий, радон и актиний, наконец, протактиний занял место между ураном и торием. Только с экаиодом и экацезием получилась заминка. Правда, она не особенно смущала ученых. Неизвестные «эки» должны быть радиоактивными, поскольку ни у кого не возникало сомнений, что радиоактивность — общее свойство элементов, которые тяжелее висмута. Поэтому рано или поздно существование восемьдесят пятого и восемьдесят седьмого будет доказано радиометрическими методами.
Своеобразные генераторы вторичных химических элементов (природные изотопы урана и тория) дают начало длинным цепочкам последовательных радиоактивных превращений. В первое десятилетие XX в. ученые имели в своем распоряжении около сорока радиоактивных изотопов элементов конца периодической системы — от висмута до урана. Эти радиоэлементы объединялись тремя радиоактивными семействами. Их возглавляют торий-232, уран-235 и уран-238. Каждый радиоактивный элемент послал своих представителей в эти семейства. Каждый, кроме экаиода и экацезия. Ни в одной из трех цепочек не было звена, которое отвечало бы изотопам восемьдесят пятого или восемьдесят седьмого элементов. Тогда напрашивается неожиданный вывод, что экаиод и экацезий не являются радиоактивными элементами. Но почему? Никто не брал на себя смелость ответить на подобный вопрос. Стало быть, искать их в рудах урана и тория, где содержатся все радиоактивные элементы без исключения, не имеет смысла.
Предположение о вероятной стабильности экаиода и экацезия не подтверждалось. Но столь же тщетными оказывались попытки обнаружить изотопы этих элементов на ветвях радиоактивных «дерев». Правда, имелась одна возможность, которой не следовало пренебрегать. Распадается ли данный радиоактивный изотоп только одним-единственным способом или же двумя способами? Скажем, обладает способностью испускать и α- и β-частицы. Если это так, то продуктами распада этого изотопа будут изотопы двух различных элементов, а цепочка радиоактивных превращений в месте исходного изотопа как бы раздвоится, разветвится. Ученые давно интересовались этим вопросом, и для некоторых изотопов как будто удалось получить положительный результат.
В 1913 г. англичанин А. Кранстон работал с радиоэлементом MsTh-II (изотопом актиния-228). Этот изотоп испускает β-частицу и превращается в торий-228. Но ученому показалось, что в очень слабой степени здесь наблюдается и α-распад. В этом случае продуктом превращения должен был оказаться долгожданный экацезий. В самом деле,
А. Кранстон, однако, ограничился лишь констатацией наблюдения.