Конечно, было бы желательно получить такой мощный поток нейтронов, который сразу бы помог решить проблему. Так уран либо плутоний, захватив большое число нейтронов за короткий промежуток времени, превратились бы в очень тяжелые изотопы, например:
или
Давно было известно, что ядра избавляются от избытка нейтронов в результате превращения их в протоны, т. е. путем ?-распада. Эти цепочки последовательных ?-превращений могут оказаться настолько длинными, что дотянутся до образования изотопов 99-го и 100-го элементов.
Расчеты же показывали, что мощности нейтронных потоков в ядерных реакторах являются слишком слабыми, чтобы осуществить идею на практике. Кроме того, теоретики видели беду и в предполагаемых малых продолжительностях жизни изотопов элементов № 99 и № 100.
1 ноября 1952 г. американцы произвели взрыв термоядерного устройства на атолле Эниветок в Тихом океане. Несколько сотен килограммов почвы на месте взрыва (получившей кодовое название «дорогостоящая грязь») были собраны со всеми предосторожностями и отправлены в США. Группы исследователей во главе с Г. Сиборгом и А. Гиорсо произвели тщательное изучение этого радиоактивного пепла. В нем было обнаружено много различных радиоактивных изотопов трансурановых элементов, и в том числе два изотопа, которые могли быть не чем иным, как изотопами 99-го или 100-го элементов.
В ходе термоядерного взрыва мощность нейтронных потоков оказалась гораздо выше, чем предполагалось. Благодаря этому и реализовались процессы захвата нейтронов ураном, представленные выше. Изотопы 253U и 255U, испустив соответственно одну за другой 7 и 8 ?-частиц, превратились в изотопы элементов девяносто девятого (25399) и сотого (255100). Их периоды полураспада оказались малыми, но вполне приемлемыми, однако, для исследований (20 дней и 22 ч).
Новые элементы получили названия «эйнштейний» (в честь А. Эйнштейна) и фермий (в честь Э. Ферми). Их долгоживущие изотопы 254Es (
Таким образом, эйнштейний и фермий были открыты, если можно так выразиться, незапланированно.
Сакраментальный вопрос: «А что же дальше» — вставал с новой остротой. Уже было совершенно ясно, что, чем больше Z, тем меньше времена жизни изотопов. Предполагалось, что для элементов с Z>100 счет должен был вестись уже на секунды. Вопрос о накоплении таких изотопов в сколь-либо приемлемых количествах не имел смысла. До сих пор химическая идентификация новых трансурановых элементов проводилась с помощью метода ионообменной хроматографии, путем установления их аналогии с соответствующими представителями редкоземельного семейства. Но слишком короткоживущие изотопы распадутся раньше, чем успеют выйти из хроматографической колонки, и тем самым исказят действительную химическую картину.
Природа, казалось, поставила перед учеными непреодолимый барьер, не давая им надежды проникнуть в область элементов второй сотни.
МЕНДЕЛЕВИЙ
Великих успехов достигли ученые, добравшись до сотого элемента, в названии которого, наконец-то, было увековечено имя Энрико Ферми, предпринявшего некогда первый поход за трансуранами.
За фермием отчетливо вырисовывались контуры страшной опасности: во весь рост поднялся главный враг трансурановых элементов — спонтанное деление. По этому виду радиоактивных превращений изотопы с Z=100 должны были, согласно расчетам, оказаться весьма короткоживущими. Успешный синтез эйнштейния и фермия в мощных нейтронных потоках сначала вселял оптимизм. Но теоретики заявили, что за фермий продвинуться не удастся, ибо слишком мал его период полураспада по спонтанному делению. Ядро сотого элемента быстрее распадется на два осколка, нежели успеет испустить ?-частицу.
И все же элемент № 101 оказался последним, который удалось синтезировать классическим методом, применяя в качестве бомбардирующего агента легкую ?-частицу. К 1955 г. Г. Сиборгу и его коллегам удалось накопить количество эйнштейния, измеряемое миллиардом атомов. Со всей тщательностью столь мизерное количество нанесли на подложку из золотой фольги, где цена золота по сравнению с ценой эйнштейния была смехотворно низкой. Мишень обстреляли ?-частицами. Ученые полагали, что произойдет ядерная реакция: