Читаем Изучай Haskell во имя добра! полностью

Вот пробный запуск для нескольких монад:

ghci> Just "двигайся дальше" >>= (\x –> return x)

Just "двигайся дальше"

ghci> [1,2,3,4] >>= (\x –> return x)

[1,2,3,4]

ghci> putStrLn "Вах!" >>= (\x –> return x)

Вах!

В этом примере со списком реализация операции >>= выглядит следующим образом:

xs >>= f = concat (map f xs)

Поэтому когда мы передаём список [1,2,3,4] функции return, сначала она отображает [1,2,3,4], что в результате даёт список списков [[1],[2],[3],[4]]. Затем это конкатенируется, и мы получаем наш изначальный список.

Левое тождество и правое тождество являются, по сути, законами, которые описывают, как должна вести себя функция return. Это важная функция для превращения обычных значений в монадические, и было бы нехорошо, если бы монадическое значение, которое она произвела, имело больше, чем необходимый минимальный контекст.

<p>Ассоциативность</p>

Последний монадический закон говорит, что когда у нас есть цепочка применений монадических функций с помощью операции >>=, не должно иметь значения то, как они вложены. В формальной записи выполнение (m >>= f) >>= g – точно то же, что и выполнение m >>= (\x –> f x >>= g).

Гм-м, что теперь тут происходит? У нас есть одно монадическое значение, m, и две монадические функции, f и g. Когда мы выполняем выражение (m >>= f) >>= g, то передаём значение m в функцию f, что даёт в результате монадическое значение. Затем мы передаём это новое монадическое значение функции g. В выражении m >>= (\x –> f x >>= g) мы берём монадическое значение и передаём его функции, которая передаёт результат применения f x функции g. Нелегко увидеть, почему обе эти записи равны, так что давайте взглянем на пример, который делает это равенство немного более очевидным.

Помните нашего канатоходца Пьера, который пытался удержать равновесие, в то время как птицы приземлялись на его балансировочный шест? Чтобы симулировать приземление птиц на балансировочный шест, мы создали цепочку из нескольких функций, которые могли вызывать неуспешное окончание вычислений:

ghci> return (0, 0) >>= landRight 2 >>= landLeft 2 >>= landRight 2

Just (2,4)

Мы начали со значения Just (0, 0), а затем связали это значение со следующей монадической функцией landRight 2. Результатом было другое монадическое значение, связанное со следующей монадической функцией, и т. д. Если бы надлежало явно заключить это в скобки, мы написали бы следующее:

ghci> ((return (0, 0) >>= landRight 2) >>= landLeft 2) >>= landRight 2

Just (2,4)

Но мы также можем записать инструкцию вот так:

return (0, 0) >>= (\x –>

landRight 2 x >>= (\y –>

landLeft 2 y >>= (\z –>

landRight 2 z)))

Вызов return (0, 0) – то же самое, что Just (0, 0), и когда мы передаём это анонимной функции, образец x принимает значение (0, 0). Функция landRight принимает количество птиц и шест (кортеж, содержащий числа) – и это то, что ей передаётся. В результате мы имеем значение Just (0, 2), и, когда передаём его следующей анонимной функции, образец y становится равен (0, 2). Это продолжается до тех пор, пока последнее приземление птицы не вернёт в качестве результата значение Just (2, 4), что в действительности является результатом всего выражения.

Поэтому неважно, как у вас вложена передача значений монадическим функциям. Важен их смысл. Давайте рассмотрим ещё один способ реализации этого закона. Предположим, мы производим композицию двух функций, f и g:

(.) :: (b –> c) –> (a –> b) –> (a –> c)

f . g = (\x –> f (g x))

Если функция g имеет тип a –> b и функция f имеет тип b –> c, мы компонуем их в новую функцию типа a –> c, чтобы её параметр передавался между этими функциями. А что если эти две функции – монадические? Что если возвращаемые ими значения были бы монадическими? Если бы у нас была функция типа a –> m b, мы не могли бы просто передать её результат функции типа b –> m c, потому что эта функция принимает обычное значение b, не монадическое. Чтобы всё-таки достичь нашей цели, можно воспользоваться операцией <=<:

(<=<) :: (Monad m) => (b –> m c) –> (a –> m b) –> (a –> m c)

f <=< g = (\x –> g x >>= f)

Поэтому теперь мы можем производить композицию двух монадических функций:

ghci> let f x = [x,-x]

ghci> let g x = [x*3,x*2]

Перейти на страницу:

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных