В самом деле, если какая-либо замкнутая система тел располагает запасами тепловой энергии и если имеется большой градиент энергетического уровня у ряда тел, то тела с большим запасом тепловой энергии неизбежно должны будут передавать ее другим телам, обладающим меньшим запасом энергии, и таким образом постепенно приближаться к тепловой смерти.
С точки зрения второго закона термодинамики, здесь все происходит закономерно и понятно, но возникает естественный вопрос: как быть с живым организмом, который не только отдает тепло, но и непрерывно продуцирует тепло внутри себя в результате различного рода химических реакций? Совершенно очевидно, что организм представляет собой, выражаясь физическим языком, антиэнтропическую систему, т.е. систему, сопротивляющуюся рассеиванию тепловой энергии. В этом кибернетики усматривают общее между организмом и машиной. И тот и другая, являясь узлами вселенной с большим запасом энергии, сопротивляются как организованные системы энтропическому уничтожению. Кроме того, в обеих системах на основе внутренних механизмов, получающих энергию извне, происходит поддержание энергетического градиента между системой и окружающим ее миром.
На основании этого и зарождаются те аналогии и перспективы, которыми так богата современная кибернетика. В самом деле, если две системы имеют тенденцию “к уменьшению энтропии ”, то, очевидно, в частных узлах этих систем мы также можем отыскать некоторые общие черты. Так постепенно отшлифовывается точка зрения кибернетики, которая вызвала в зарубежной литературе довольно бурную и вполне понятную реакцию некоторых исследователей. Эту тенденцию в общих чертах можно сформулировать в следующих словах:
Несомненно, это положение в какой-то мере и может быть проиллюстрировано, однако едва ли сейчас можно принять его как универсальный закон. Именно в сопоставлении организма и машины особенно сказывается качественное различие между композицией, архитектурой целой функции и теми конкретными материальными средствами, с помощью которых осуществляется эта композиция функций.
В самом деле, допустим, что мы имеем какое-либо готическое сооружение из кирпичей. Аналитически говоря, в основе этой готической архитектуры лежит кирпич, цемент, железные крепления и т.д. Таким образом, единицы этой архитектуры, кирпичи, связаны цементом. Мыслимо также архитектурное сооружение в том же готическом стиле, но из дерева. Тогда в частных узлах этой архитектуры мы будем иметь и качественно, и принципиально другие связывающие средства, между тем как общая архитектура их может быть совершенно идентичной. Уже в этом примере, взятом из мира мертвых материальных систем, мы видим, как неправильно отождествление от общего к частному. Что же касается организма и машин, то такое качественное и принципиальное различие идет здесь еще дальше и глубже, хотя, как мы увидим ниже, некоторые общие принципы функционирования могут быть одинаковыми.
Пожалуй, наиболее важным принципом, объединяющим неживые и живые системы функционирования, является принцип обратных связей. Именно этот общий принцип кибернетики — необходимость обратной информации о полученном аффекте, характерен для функционирования всех видов машинных устройств (до автоматически регулирующихся машин), а также для поведения живых организмов. Как выражается Винер, “для эффективного поведения необходимо получать информацию посредством какого-нибудь процесса обратной связи, сообщающего о достижении цели”44.
Как будет показано ниже, необходимость обратной информации о том эффекте, который получил организм в результате какого-либо своего действия, является абсолютно необходимым условием любого прогресса. Между тем кибернетики, физики и математики полагают, что закон обратной связи был вскрыт и сформулирован прежде всего на примере машин с автоматической регуляцией. Физиология давно уже знала эти эффекты и много раз вплотную подходила к формулировке обратных связей, назвав их, однако, в соответствии с характером самого процесса “обратной афферентацией” или “санкционирующей афферента-цией”45. Общие указания на необходимость, например, притока чувствительных импульсаций от мышцы для моторной деятельности имелись и ранее (Ч.Белл, И.М.Сеченов, Байер и др.).