Эггер описал поведение ленты с помощью уравнения и попробовал применить его к каплям воды. «Результаты, полученные Эггером, приближенно отражают подлинное поведение капель воды», — поясняет Базеран.
Он не только использовал модель, созданную Эггером, но усовершенствовал ее, описав еще и то, что происходит внутри самой капли. Ученый словно разъял каплю на множество частей, чтобы понять, как они перетекают внутри ее, чтобы выяснить, что бывает после того, как водяная нить разорвется, и как это влияет на дальнейшую динамику капель.
Компьютерная модель позволила пристальнее заглянуть в глубь происходящего: как только капля срывается вниз, то нить, на которой она висела, не сразу оттягивается назад; сперва она сама скручивается в крохотную капельку — так называемую капельку-сателлит. С ее поверхности тут же срываются крохотные частички воды — субсателлиты; они всплывают из глубины этой капельки, как мяч — из воды.
Именно из-за их появления струйные принтеры оставляют нечеткий, чуть размытый оттиск. Теперь, зная, что за микроскопические процессы протекают внутри каждой капли, можно изготовить струйный принтер, работающий гораздо четче.
С такими выводами согласны и европейские физики. Причем, анализируя работу того же струйного принтера, им недавно удалось обнаружить и еще один ранее неизвестный феномен. В момент столкновения водяной капли с бумагой или иной твердой гидрофобной поверхностью от нее, от капли, отделяется тончайшая струйка. Причем скорость этой струйки в 40 раз превосходит скорость падения самой капли!
Это наблюдение Денис Бартоло из французской
«Полученные результаты важны для понимания практически всех процессов, при которых происходит столкновение капель с поверхностью, — утверждают исследователи. — Речь вдет и о струйной печати, и о капельном орошении, а также опрыскивании пестицидами в агрономии, не говоря уже о применении аэрозолей в современном изобразительном искусстве»…
ЭЛЕКТРИЧЕСТВО ИЗ ПРОТОЧНОЙ ВОДЫ
Канадские ученые из Университета провинции Альберта разработали новый способ получения небольших количеств электрической энергии из проточной воды. Принцип действия устройства, получившего название электрокинетической батарейки, состоит в пропускании воды через керамический или стеклянный «фильтр», помещенный в сосуд с электродами. Оказывается, при прохождении молекул Н2О через тысячи мельчайших каналов происходит поляризация положительно и отрицательно заряженных ионов воды. «Благодаря этому естественному разделению и накапливается электрический потенциал», — пояснил профессор Дэниел Квок.
В первых опытах, прогнав небольшое количество воды через 450 000 микроканалов, ученым удалось получить достаточно энергии для того, чтобы зажечь светодиод. И это только начало.
По словам ученых, их изобретение может быть использовано, например, для обеспечения работы сотовых телефонов или калькуляторов. Пользователям таких устройств, чтобы «подзарядить» их, понадобится лишь десяток раз нажать на рукоять миниатюрного насоса для перекачки воды внутри электрокинетической батарейки.
Кроме того, хотя количество энергии, получаемой в результате прохождения воды через один микроканал, очень мало — 30-сантиметровый столбик жидкости даст всего 1–2 микроампера, ученые не исключают возможности создания «фильтра» с миллионами каналов. А это позволит получать на выходе электрические мощности, сравнимые с возможностями, например, автомобильного аккумулятора.
С ПОЛКИ АРХИВАРИУСА
Правдивая история о том, как грузовики согревали дома и ездили, не тратя ни грамма бензина
В начале XX века в Англии часто можно было наблюдать, как, по вечерам, когда стемнеет, к домам подъезжали грузовые автомобили и подключались к системе отопления. Зачем?
Климат Англии не сравнить с нашим среднерусским. В Лондоне растут даже пальмы. Но все же — почитайте классиков — промозглый туман, часто моросящий дождь заставляют людей дрожать от холода, особенно по ночам. Потому отоплению домов англичане всегда уделяли много внимания. Им мы обязаны, в частности, изобретением камина. Сидеть у камина уютно, но топлива он пожирает несметное количество, а в комнату попадает лишь сотая часть полученного тепла.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное