Читаем Юный техник, 2004 № 06 полностью

В устройстве использована новинка полупроводниковой электроники — ультраяркий светоизлучающий диод HL1 белого цвета свечения. Его включение осуществляет так называемый составной транзистор из пары VT1, VT2, работающий в ключевом режиме. Питание — два 1,5-вольтовых гальванических элемента, составляющих батарею GB1. Ясно, что в нормальных условиях светодиоду HL1 незачем расходовать энергию источника.

Адаптер G1, включенный в розетку осветительной сети, создает на диоде VD1 падение напряжения около 0,7 В. Положительная полярность этого напряжения, приложенная к базе VT1, удерживает составной транзистор в запертом состоянии. При этом через токоограничивающий резистор R2 и батарею GB1 протекает маленький, порядка 0,01 миллиампера, ток разряда, практически не влияющий на ресурс батареи. Как только напряжение в электросети исчезнет, исчезнет и ток на выходе адаптера и падение напряжения на диоде VD1. На базу VT1 от батареи GB1 поступит напряжение отрицательной полярности, которое отопрет пару VT1, VT2. Через светодиод НИ потечет ток около 20 мА, вызывающий яркое свечение, которого достаточно, чтобы ориентироваться в помещении.

Если необходимо, можно «оторвать» светильник от разъема XI и взять с собой. Сберегая батарейку, отключите питание выключателем SA1. Небольшое потребление тока устройством позволяет использовать в источнике питания достаточно миниатюрные гальванические элементы LR03, резисторы МЛТ-0,125. Если приобрести указанный на схеме 1 импортный светодиод не сможете, используйте лампочку накаливания от карманного фонаря на напряжение 2,5 В и ток 0,25 — 0,5 А. В этом случае транзистор VT2 замените на более мощный, выпускавшийся ранее ГТ403Д, а батарею составьте из двух элементов LR6 (типоразмер АА) либо более емких LR14.

Заметим, что конструкция рассматриваемого функционального устройства может получиться проще, если вам доступно миниатюрное электромагнитное реле типа РЭС-34, паспорт РС4.524.370-02. Принципиальная схема такого варианта дана на рисунке 2.

Здесь органом, «чувствующим» наличие либо отсутствие напряжения в сети, служит реле К1, получающее питание с выхода 9-вольтового адаптера G1. Последний должен быть рассчитан на нагрузку током не менее 50 мА. Когда в электросети имеется напряжение, контакты реле 1, 2 удерживаются разомкнутыми. Но стоит напряжению исчезнуть, как они замкнутся под действием пружины, а светодиод НИ начнет светиться. Полярность управляющего напряжения для реле не важна.

Функция второго автоматического устройства (рис. 3) — привлечь громким звуком внимание обитателей жилья к факту исчезновения тока в сети.

В устройстве есть и дополнительный световой сигнал. Он полезен тем, у кого проблемы со слухом. Здесь механизм распознавания ситуации и управления исполнительным узлом аналогичен рассмотренному на рисунке 1, поэтому повторяющиеся элементы схемы имеют только позиционные обозначения.

Пока все нормально, транзисторы VT1, VT2 заперты, световой индикатор HL1 и цифровая микросхема DD1 не потребляют энергию от батареи GB1. Обесточивание сети приводит к отпиранию транзисторов, благодаря чему начинает светиться индикатор НL1 и переключается мультивибратор, собранный на логических ячейках DD1.1, DD1.2. Элементы R5, С1 задают частоту переключений около 3,5 кГц, отвечающую частоте резонанса акустического пьезоизлучателя BQ1. Последний связан с мультивибратором через параллельно включенные буферные ячейки DD1.3, DD1.4. Для питания микросхемы подойдет гальваническая батарея GB1 с напряжением 9 В, например, 6RLF22 или отечественная «Крона». Подбирая номинал конденсатора С1, удается повысить громкость звучания сигнализатора. В этом сигнализаторе, как и в предыдущем, может быть использовано электромагнитное реле. При этом из схемы исключите резисторы R1…R3, диод VD1 и оба транзистора. Выводы от контактов 1, 2 реле присоедините вместо выводов коллектора и эмиттера транзистора VT2.

Скомпоновать детали на монтажной плате не составит труда, ориентируясь на рисунок 4, где приведено расположение электрических выводов транзисторов, микросхемы и реле.

Н. ГЕОРГИЕВ

<p>ЧИТАТЕЛЬСКИЙ КЛУБ</p>

Вопрос — ответ

Не подскажете ли, как можно наглядно представить себе цепную реакцию? Каковы примеры ее проявления в природе?

Сергей Колоколов,

Московская область, г. Звенигород

Прежде всего, понятие «цепная реакция» связывают с работами физиков по созданию атомной бомбы. Используют контролируемую цепную реакцию также в реакторах атомных электростанций. Существуют примеры цепных реакций и в природе. Таковы, например, камнепады и снежные лавины в горах. Достаточно небольшого толчка, даже звука, чтобы на вершине сдвинулся с места небольшой камешек или снежный комок. Но по мере движения вниз по склону он будет затрагивать другие камни или снежные пласты. И к подножию горы вскоре мчится грозная лавина, сметая все на своем пути.

Перейти на страницу:

Похожие книги

Академик Императорской Академии Художеств Николай Васильевич Глоба и Строгановское училище
Академик Императорской Академии Художеств Николай Васильевич Глоба и Строгановское училище

Настоящее издание посвящено малоизученной теме – истории Строгановского Императорского художественно-промышленного училища в период с 1896 по 1917 г. и его последнему директору – академику Н.В. Глобе, эмигрировавшему из советской России в 1925 г. В сборник вошли статьи отечественных и зарубежных исследователей, рассматривающие личность Н. Глобы в широком контексте художественной жизни предреволюционной и послереволюционной России, а также русской эмиграции. Большинство материалов, архивных документов и фактов представлено и проанализировано впервые.Для искусствоведов, художников, преподавателей и историков отечественной культуры, для широкого круга читателей.

Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев

Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное