Помните, в знаменитом романе герои Жюля Верна строят громадную пушку и выстреливают из нее снаряд с людьми в сторону Луны?.. Критики говорили в свое время, что в таком снаряде путешественники погибли бы от перегрузок еще при выстреле.
Эта проблема, между прочим, решается относительно просто, если вместо пороха в пушке использовать электромагнитный ускоритель, постепенно разгоняющий снаряд, словно сердечник в катушке электромагнита. А тот факт, что путешественники не попали на Луну, поскольку прицел оказался неточным, почему-то привлекает меньше внимания. Между тем, для специалистов выбор траектории космического аппарата — задача из задач.
Да, казалось бы, чего проще: как только Луна покажется на небосводе, наводи пушку прямой наводкой — и огонь! На практике все иначе.
Во-первых, Луна представляет собой движущуюся цель. А каждый охотник знает, что по летящей цели нужно стрелять с упреждением. То есть целиться не в саму цель, а в то место, где она окажется, когда пуля преодолеет расстояние между ружьем и целью. Кроме того, движется сама Земля. Причем не только вокруг собственной оси, но и мчится вместе с Луной вокруг Солнца. А это тоже добавляет сложности.
Еще сложнее попасть в Венеру или, скажем, в Марс. Здесь приходится учитывать еще множество дополнительных условий: скорости перемещения обеих планет — Земли и Марса по своим орбитам, их взаимное местоположение в момент запуска межпланетного зонда и в момент приближения к конечной точке маршрута, влияние на движение гравитационных полей Солнца, планет-гигантов…
В общем, приходится учитывать столько факторов, что даже современные суперкомпьютеры должны работать многие часы подряд, прежде чем выдадут исходные данные для точного космического «выстрела». И это еще не все…
Точность межпланетных расчетов не раз выверялась, например, при посылке автоматических исследовательских зондов на Луну. И все же при этом не раз случались накладки.
Станция «Луна-1», стартовавшая 2 января 1959 года, промахнулась мимо спутника нашей планеты и улетела неизвестно куда. Прицел «Луны-2» оказался точнее, и она врезалась в поверхность Луны. С одной стороны, хорошо, что расчеты баллистиков оказались верны, но много ли толку от такого «выстрела»?
Стало понятно, что нужно контролировать не только направление движения межпланетного зонда, но и менять его скорость по мере надобности.
Вспомните, что произошло с «ядром», выпущенным из пушки в романе Жюля Верна. Путешественники хоть и не попали на Луну, но, долетев до нее, развернулись в поле тяготения естественного спутника нашей планеты, да так удачно, что вернулись затем обратно на Землю.
И тут, надо сказать, им сказочно повезло. Потому что ни один специалист даже в наши дни не возьмется рассчитать подобный маршрут с достаточно высокой степенью вероятности. Все величины, которые приходится учитывать, можно измерить лишь с какой-то степенью допуска: многие из них все время меняются, являются в известной степени величинами случайными. И время запуска, и скорость стартующей ракеты, даже скорость и направление ветра при запуске — все это можно предсказать лишь с определенной степенью точности. А коль приблизительны исходные данные, значит, получишь и приблизительный результат.
Казалось бы, как старались баллистики, просчитывая траекторию полета корабля Ю.А. Гагарина! А когда тот вышел на орбиту, его траектория оказалась на несколько десятков километров выше расчетной. Это означало: если на расчетной орбите корабль «Восток» мог затормозиться самостоятельно, используя верхние слои атмосферы, и сесть примерно через неделю после старта (на этот срок были рассчитаны аварийные запасы воздуха, воды и еды на борту), то с реальной траектории корабль смог бы спуститься лишь через месяц…
Все обошлось благодаря тому, что на борту корабля имелась собственная тормозная установка, позволившая подкорректировать траекторию полета. И «Восток» с первым космонавтом на борту благополучно приземлился уже через 108 минут после старта.
Иметь возможность исправить ошибки, подкорректировать траекторию во время полета необходимо по многим причинам.
Взгляните, например, по какой сложной траектории добирались астронавты на Луну во время экспедиции «Аполлон». Они не двинулись сразу к естественному спутнику нашей планеты, а сначала кружились вокруг Земли, постепенно набирая скорость. Тому были свои причины.
Для того чтоб аппарат стал искусственным спутником Земли, он должен достичь первой космической скорости, равной примерно 8 км/с. А вот для полета к Луне нужна уже вторая космическая скорость — 11,2 км/с.
Подлетев к естественному спутнику нашей планеты, корабль должен притормозить — только тогда он не пролетит мимо, а станет спутником Луны. А уж с этой орбиты непосредственно на ее поверхность отправляется спускаемый лунный модуль — по сути, автономный маленький корабль, который после выполнения космонавтами программы доставляет их на окололунную орбиту.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное