Читаем Юный техник, 2002 № 04 полностью

Суть его в том. что тяжелые частички, масса которых значительно превосходит массу ионов, могут быть сильно заряжены. На каждой частичке может собраться заряд, равный числу электронов, и тогда между этими частичками возникает очень сильное кулоновское взаимодействие. И они выстраиваются в своеобразный кристалл.

Первые эксперименты по созданию таких кристаллов начались лет 5 назад одновременно в Германии и России. Но поскольку частички относительно тяжелые, гравитация сильно искажает форму и структуру плазменных кристаллов. Поэтому важно было от нее избавиться.

Поначалу опыты в невесомости ставили на самолетах: есть такие параболические траектории, когда удается получать невесомость в течение 20 минут. Потом часть экспериментов провели на геофизических ракетах, которые, также находясь в режиме свободного падения, позволяли получать микрогравитационные условия.

Еще мы провели три эксперимента на орбитальной станции «Мир», пока она функционировала. И вот сейчас работает уже вторая экспедиция на Международной космической станции. На российском сегменте есть установка, на которой и проводятся эксперименты.

— И что же они показали?

— Выяснилось, что плазменный кристалл, получающийся в космосе, оказывается более крупным. Расстояние между соседними частицами тоже больше — порядка одного миллиметра. Да и сами частицы крупнее…

На будущее намечена большая международная программа работ, которую поддерживает Европейское космическое агентство, Российское космическое агентство и НПО «Энергия». У ученых есть немало идей, как стабилизировать кристаллы в условиях невесомости, как их растить, как исследовать процессы фотоионизации в космосе.

— Сейчас рано говорить о прикладном значении этих работ. Но, в принципе, где они могут найти применение в будущем?

— Одна из идей — использовать радиоактивную пыль для того, чтобы получать компактные источники энергии для космических нужд. Есть мысль использовать эти структуры в качестве химических катализаторов. Возможно использование «плазменных кристаллов» в микроэлектронике.

Кроме того, с помощью электрических полей мы надеемся выносить радиоактивную пыль из устройств типа ТОКАМАКов, где она накапливается за время работы. Ну, и конечно, важно, что плазменная пыль обладает свойством разделять разные фракции. Она работает как своеобразное сито, позволяющее разделить смесь по размерам частиц. И это тоже актуальная задача в технике.

Беседу вел Владимир БЕЛОВ

<p>Пока ковер-самолет не придуман…</p>

Пожар в Останкино, трагедия в Нью-Йорке…

Эти события заставили изобретателей с новой энергией вернуться к старой проблеме: как оперативно спасти людей, оказавшихся в горящем высотном сооружении?

«Лучше всего здесь подошел бы ковер-самолет, — мрачно сострил один из экспертов. — Компактная штука — раскатал и улетел»… Но такие ковры, к сожалению, пока встречаются лишь в сказках. А что могут предложить изобретатели?

Спасение в маховике?

Оригинальное спасательное средство создали ученые НИИ машиноведения, доктор технических наук Аркадий Бессонов и инженер-конструктор Михаил Очан. По внешнему виду оно представляет собой нечто вроде большой рулетки в футляре размером с суповую тарелку.

Устройство крепится над оконным проемом и позволяет в случае необходимости быстро и безопасно спустить с высоты до 150 м груз массой до 100 кг. Спускающемуся человеку достаточно пристегнуть карабин спасательного пояса к концу выходящей из футляра металлической ленты и прыгнуть вниз. Лента разматывается с постоянной скоростью и доставляет человека вниз без травм и ушибов. А как только карабин отстегнут, лента снова уходит в футляр. И вот она уже готова к спуску очередного спасаемого.

«В спусковом устройстве в качестве преобразователя энергии использован маховик, — пояснил Аркадий Бессонов. — Он составляет сердцевину барабана, на которую намотана лента. По мере сматывания радиус рулона постепенно уменьшается, и вроде бы скорость спуска должна увеличиться.

Однако этому препятствует маховик, который за счет инерции стремится сохранить полученную в начале спуска скорость. Поэтому спуск вполне безопасен. Тем более что в конце его лента еще и притормаживается»…

Устройство удобно еще и тем, что практически полностью изготовлено из металла, а не из горючей органики, как, скажем, обычные веревочные лестницы. И не из синтетики, как спасательные нейлоновые рукава (см. приложение «Кстати…»).

Если смелый — прыгай…
Перейти на страницу:

Похожие книги

Академик Императорской Академии Художеств Николай Васильевич Глоба и Строгановское училище
Академик Императорской Академии Художеств Николай Васильевич Глоба и Строгановское училище

Настоящее издание посвящено малоизученной теме – истории Строгановского Императорского художественно-промышленного училища в период с 1896 по 1917 г. и его последнему директору – академику Н.В. Глобе, эмигрировавшему из советской России в 1925 г. В сборник вошли статьи отечественных и зарубежных исследователей, рассматривающие личность Н. Глобы в широком контексте художественной жизни предреволюционной и послереволюционной России, а также русской эмиграции. Большинство материалов, архивных документов и фактов представлено и проанализировано впервые.Для искусствоведов, художников, преподавателей и историков отечественной культуры, для широкого круга читателей.

Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев

Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное