Причем новые материалы проявили себя наилучшим образом при полетах не только в дозвуковом, но и в сверхзвуковом режимах. Накопленный опыт теперь используется и для изготовления крыльев больших самолетов. Законцовки плоскостей выполняются на них из композиционных материалов и работают таким образом, чтобы снизить нагрузки на корневую часть крыла. Только за счет этого удалось облегчить летательный аппарат на 3500 кг.
Профессор Эдуард Константинович Кондрашов рассказал нам об авиационных покрытиях. Казалось бы, невелика хитрость — покрасить самолет. Однако даже для забора надо правильно подобрать краску. Что же тогда говорить о летательном аппарате?
Вот лишь перечень некоторых требований к авиационному покрытию. Оно должно надежно держаться на покрываемой поверхности во всем диапазоне температур и скоростей. Предохранять поверхность от коррозии. Не ухудшать, а хорошо бы — улучшать аэродинамическое обтекание машины. Не быть тяжелым — а то ведь только при окраске самолет может потяжелеть на 200–300 кг.
И это примерный набор лишь так называемых общих требований конструкторов. А есть еще и специальные. Например, чтобы покрытие обеспечивало малую радиозаметность машины, поглощало и рассеивало лучи радаров. Чтобы краска еще и от радиации защищала… или меняла цвет при изменении температуры… И сотрудники ВИАМа не теряются.
— Нам приходится иметь дело практически со всей таблицей Д.И. Менделеева, — подвел итог своему рассказу Э.К. Кондрашов. — Да и бионикой тоже интересуемся: как, скажем, работает механизм изменения окраски у того же хамелеона, что у него можно позаимствовать?..
И это лишь одно из перспективных направлений. Из других отметим хотя бы использование волокон в авиационных конструкциях. Говоря упрощенно, некоторые детали и узлы авиационной техники в будущем намерены… ткать, подобно тому, как ткут ныне ткани. И такие материалы обещают быть еще прочнее нынешних композитов, в их структуру еще в процессе изготовления будут закладывать всевозможные датчики и микроэлектронные устройства. Ну а там, глядишь, дойдут и до того, чтобы выращивать из расплавов не только лопатки турбин, но и готовые узлы, и даже целые машины. Последние достижения нанотехнологии позволяют на это надеяться.
И можно быть уверенными, одними из первых в мире эти новинки опробуют, начнут активно использовать сотрудники Государственного научного центра «Всероссийский институт авиационных материалов».
ИНФОРМАЦИЯ
ОТКУДА БЕРЕТСЯ МЕТАН? Раньше полагали, что запасы природного газа метана связаны преимущественно с нефтяными залежами. Однако пять лет назад российские и швейцарские геологи открыли скопления природного газа в подземных горизонтах, где нефти мало, но циркулируют горячие солевые растворы.
Н.В. Верховцева, доктор биологических наук из Московского государственного университета им. М.В. Ломоносова, полагает, что горючий газ выделяют архебактерии, живущие в подземных водах. Это подтверждают исследования пластовых вод, взятых из Воротиловской глубокой скважины в 70 км к северу от Нижнего Новгорода. В образцах, отобранных с глубин от 1,5 до 4,5 км, обнаружили архебактерии, выделяющие метан. Они живут при температуре от 30 до 80 °C в растворах, насыщенных хлоридными и сульфатными солями кальция, натрия и магния.
КАБЕЛЬ, КОТОРЫЙ НЕ ГОРИТ, разработан в Научно-техническом центре кабельной промышленности (ОАО «ВНИИКП»). Его изоляция способна не разрушаться как минимум 3 часа при температуре 1000 °C! Это достигается применением в качестве изоляции слюдяной ленты элмикатекс. Первая партия новых кабелей выпущена на Подольском кабельном заводе для вагонеток на электрической тяге, которыми сгружают руду в плавильные печи. В дальнейшем их предполагается прокладывать всюду, где есть опасность разрушения сетей электропитания из-за повышенной температуры. К сказанному остается добавить, что наши кабели втрое дешевле импортных, хотя и не уступают им по качеству.
БАКТЕРИИ ПРОТИВ ЯДА. Российские ученые из Института микробиологии под руководством члена-корреспондента РАН Г. И. Каравайко выделили микроорганизмы, устойчивые к высокой концентрации цианидов — одного из самых токсичных соединений на Земле, применяющихся на золотодобывающих предприятиях и гальванических производствах. Теперь цианистые стоки промышленных предприятий можно обезвреживать с помощью этих микроорганизмов, которые быстро разлагают яд на безвредные вещества.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное