Читаем Юный техник, 2000 № 06 полностью

Но случается так, что где-то пограничный слой как бы прилипает к поверхности тела. В этом месте возникают вихри, приводящие к резкому увеличению сопротивления. В таких случаях говорят об отрыве пограничного слоя. У сравнительно небольших крыльев и фюзеляжей самолета это явление возникает лишь при очень высоких скоростях. У дирижаблей благодаря их огромным размерам пограничный слой начинает отрываться даже при самых небольших скоростях. В этом все дело. Если каким-то образом не дать пограничному слою оторваться, сопротивление станет меньше. И здесь строителям дирижаблей есть чему поучиться у самолетостроителей, которые разрабатывают способы управления пограничным слоем уже более полувека и добились немалых успехов.

Вспомнить хотя бы кольцо Тауненда (рис. 3), призванное скорректировать отрыв пограничного слоя на поверхности фюзеляжа самолета, приводящий к значительному росту сопротивления.

Проходящий сквозь него встречный поток прижимается к фюзеляжу и сдувает вялый, разрушенный пограничный слой. Отметим, что здесь впервые тело очень плохой, с аэродинамической точки зрения, формы, коей является фюзеляж с прилепленным к нему мотором, приобрело низкое сопротивление, свойственное удобообтекаемому телу. У дирижабля нарушение обтекаемости начинается примерно на расстоянии первой трети его длины, считая от носа, и тянется до самой кормы на десятки метров. Действие же кольца Тауненда распространяется всего на несколько метров. Поэтому дирижаблю одно кольцо помогло бы слабо. Поставить несколько колец (рис. 4) подряд?

Без серьезного расчета и эксперимента это сделать трудно, мелкие отверстия в обшивке крыла (рис. 5) с помощью компрессора газотурбинного двигателя. При этом на обшивку крыла действовало некоторое избыточное давление. Поэтому этот способ без изменения можно применить лишь на дирижаблях жесткой системы, причем это может резко утяжелить обшивку. Избежать этого можно, если каркас дирижабля сделать из трубок с отверстиями, проходящими через оболочку.

Но, пожалуй, самое интересное решение содержится в конструкции летательного аппарата ЭКИП. Последний раз мы о нем писали давно, поэтому немного напомним.

При проектировании самолетов тон задает аэродинамика. Сначала создается его форма, а уже потом инженеры начинают ломать голову над тем, как сделать ее прочной и легкой, разместить в ней груз, двигатели, экипаж. Группа ученых под руководством профессора Л.Щукина задумала решить эту задачу в противоположном направлении. Новый самолет типа «летающее крыло» будет иметь форму батона — решили они (рис. 6).

В нем можно расположить двигатели, экипаж и любой груз — от колонны танков до стада коров. При этом «батон» получится очень легким и прочным. Единственная проблема — крыло такой формы не сможет летать из-за отрыва пограничного слоя и образования сильнейших завихрений на верхней его поверхности. Эту неприятность ученые смогли устранить при помощи системы управления пограничным слоем УПС.

Вот как она устроена. На верхней поверхности летательного аппарата есть ряд открытых полостей с размещенными в них обтекаемыми телами (рис. 7).

В каждой полости создается кольцевой вихрь, охватывающий обтекаемое тело. Воздушный поток, находящийся в состоянии, близком к срыву, как бы проваливается в вихревую ячейку. После взаимодействия с вихрем между слоями потока восстанавливается соотношение скоростей, необходимое для его дальнейшего движения без отрыва.

Эксперименты показали, что «батон» при наличии подобной системы УПС ведет себя как удобообтекаемое тело до скорости 650 км/ч и, возможно, выше.

Следуя логике конструкции аппарата ЭКИП, мы можем представить себе дирижабль будущего как сферический аэростат, оснащенный системой УПС. При такой форме минимальна площадь поверхности, а значит, и затраты мощности на систему УПС. Вот какие результаты мы могли бы получить. Величайший в мире дирижабль «Гинденбург» имел объем 190 000 куб. м, диаметр 41 м, длину 236 м и площадь поверхности 40 000 кв. м. Равный ему по объему сферический дирижабль имел бы диаметр 68 м при площади поверхности в три раза меньше.

Можно ожидать, что он будет способен летать со скоростью более 300 км/ч на расстояния до 13 000 км, имея на борту около 150 т полезного груза.

А. ИЛЬИН

Рисунки автора

<p>ЛЮБОПЫТНЫЕ ПРОЕКТЫ</p><p>Бывает, что и отель летает…</p>

Давно, еще в «ЮТ» № 1 за 1993 г., мы рассказали о проекте «Термоплан», разработанная в Московским авиационном институте под руководством Ю.Ишкова. Но в то время мы и подумать не могли (как, впрочем, и сами авторы проекта), что он получит весьма оригинальное продолжение…

Перейти на страницу:

Похожие книги

Академик Императорской Академии Художеств Николай Васильевич Глоба и Строгановское училище
Академик Императорской Академии Художеств Николай Васильевич Глоба и Строгановское училище

Настоящее издание посвящено малоизученной теме – истории Строгановского Императорского художественно-промышленного училища в период с 1896 по 1917 г. и его последнему директору – академику Н.В. Глобе, эмигрировавшему из советской России в 1925 г. В сборник вошли статьи отечественных и зарубежных исследователей, рассматривающие личность Н. Глобы в широком контексте художественной жизни предреволюционной и послереволюционной России, а также русской эмиграции. Большинство материалов, архивных документов и фактов представлено и проанализировано впервые.Для искусствоведов, художников, преподавателей и историков отечественной культуры, для широкого круга читателей.

Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев

Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное