Читаем История физики полностью

Явление, обратное фотоэлектрическому эффекту, заключается в возникновении излучения из-за захвата электрона атомом или молекулой. Если этот захват происходит в одном элементарном акте, то возникает фотон, энергия hv которого равна кинетической энергии электрона (сложенной с величиной соответствующей работы выхода). При возникновении рентгеновских лучей в трубке Рентгена происходит как раз торможение электронов на антикатоде во многих элементарных актах. Но наибольшая возможная частота (или наименьшая возможная длина волны) всегда соответствует кинетической энергии электронов. Это утверждает открытый в 1915 г. В. Дюане и Ф. Л. Гунтом закон, определяющий границу спектра торможения со стороны коротких длин волн. В 1912 г. при открытии интерференции рентгеновских лучей этот закон еще не был известен, поэтому М. Лауэ должен был, согласно своей теории, ожидать гораздо больше точек интерференции, чем фактически оказалось, и ошибочно приписал их отсутствие селективным свойствам атомов кристалла. Согласно закону Дюане-Гунта фактически не оказалось волн короткой длины, которые должны были бы появиться в недосчитанных точках.

Еще яснее, пожалуй, обнаруживается реальность светового кванта в найденном в 1923 г. А. X. Компто-ном рассеянии рентгеновских лучей, поскольку при этом играет роль не только энергия светового кванта,

но и его импульс. Уже Рентген заметил, что эти лучи испытывают диффузное рассеяние во всех телах. Это рассеяние, отчасти происходящее с неизменной длиной волны, как это было давно известно в случае света, было одной из основных предпосылок успешности опытов по интерференции в кристаллах. Но Комптон показал, что наряду с этим появляется рассеяние с увеличенной длиной волны, иначе говоря, с уменьшенной частотой. Теория этого явления, развитая Комптоном и независимо от него П. Дебаем, является по существу применением законов сохранения энергии и импульса к взаимодействию между квантом света и свободным электроном. Квант света несет с собой определенные энергию и импульс. После удара часть энергии и импульса переходит к электрону, а квант летит дальше в другом направлении с уменьшенной энергией и, следовательно, уменьшенной частотой. Это представление подтвердилось во всех соответствующих опытах.

Однако мы зашли слишком далеко вперед и должны немного вернуться. В 1875 г. Генрих Фридрих Вебер (1842-1913) получил для удельной теплоты обеих модификаций углерода - алмаза и графита, а также для бора и кремния гораздо меньшие значения, чем это вытекает из закона Дюлонга-Пти (гл. 10). При этом он показал также, что при возрастании температуры эти значения все больше и больше приближаются к теоретическим значениям. Эйнштейн, который в качестве цюрихского студента слушал Вебер а, дал в 1907 г. теорию этого явления. Согласно статистике Больцма-на - Гиббса энергия гармонических осцилляторов является линейной функцией абсолютной температуры; поэтому удельная теплота системы, состоящей из подобных осцилляторов, остается постоянной. Но согласно статистике Планка энергия при падении температуры уменьшается гораздо быстрее и удельная теплота падает при низких температурах экспоненциально до нуля. Благодаря тому, что Эйнштейн приписал атомам твердых тел устойчивые положения покоя, вокруг которых они колеблются с определенной частотой, он

смог качественно объяснить наблюдаемое уменьшение удельной теплоты. В 1911 г. П. Дебай дополнил это представление: он приписал упругим собственным колебаниям твердого тела энергию, заданную Планком для осциллятора. Так получился знаменитый закон пропорциональности удельной молярной теплоты третьей степени температуры, который хорошо описывает факты при температуре, близкой к абсолютному нулю. Измерения В. Нернста и других подтвердили это впоследствии для многих тел.

Три важных открытия принес 1913 г. Во-первых, Дж. Франк и Г. Герц исследовали торможение электронов атомами газа при их соударениях; перенос энергии от ударившегося электрона на встреченный им атом происходит лишь в определенных дискретных количествах, зависящих от природы атома. Объяснение было очевидным: атомы имеют дискретные состояния энергии, точно так же, как это утверждал Планк для резонатора, но эти уровни энергии не равноотстоящие. Если атом будет возбужден, находясь в начальном состоянии, т. е. на самом низшем уровне, то электрон должен доставить ему разницу в энергии между самым высоким уровнем и основным; тогда электрон теряет точно это количество энергии. Те же исследователи показали также, что отнятая у электрона энергия зачастую испускается в виде светового кванта и что частота этого излучения вычисляется из равенства энергии кванта hи потерянной электроном энергии. В работах Франка и Герца нашла, таким образом, прямое экспериментальное подтверждение гипотеза о дискретных уровнях энергии.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука