Читаем История физики полностью

Используя понятие температуры и представление о неразрушимости количества тепла, Жан Батист Био (1774-1862) в 1804 г. и в более законченной форме Жан Батист Джозеф Фурье (1768-1830) в 1807 и 1811 гг. основали математическую теорию теплопроводности. Созданные ими для этой цели методы являются классическими вспомогательными средствами математической физики; это относится прежде всего к изображению произвольных функций в виде рядов или интегралов синусоидальных функций. В теории любого волнового процесса, будет ли это звук, волны на поверхности жидкостей или электромагнитные колебания, играет важную роль созданное Фурье разложение на чистые синусоидальные колебания, тем более, что каждый акустический резонатор, каждый оптический спектральный аппарат совершают это разложение автоматически (до известной степени). В дополнение к этому математика создала разложение функций в ряды «ортогональных» функций, которые теперь имеют огромное значение для решения уравнения Шредингера (гл. 14).

Труд Фурье является примером того, как требования физики вызывают фундаментальный математический прогресс.

<p>ГЛАВА 8</p><p>ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ</p>

Закон сохранения энергии исторически возник в механике. Уже Галилей применял его, но скорее интуитивно, а не как результат наблюдения. Он указывал, что достигнутая при падении скорость тела позволяет ему подняться на первоначальную высоту, но не выше. Гюйгенс обобщил это положение для центра тяжести системы падающих тел. Лейбниц придал этому принципу в 1695 г. такую форму: произведение силы на путь дает увеличение «живой силы» (vis viva). Ньютон не придавал этому понятию особого значения. Напротив, Иоганн Бернулли (1667-1748) часто говорит о сохранении живых сил (conservatio virium vivarum) и подчеркивает, что при исчезновении живой силы не теряется способность работы, но она только переходит в другую форму. Леонард Эйлер (1707-1783) знал, что при движении материальной точки под влиянием центральной силы живая сила всегда одна и та же, когда точка находится на определенном расстоянии от центра тяжести. К 1800 г. уже было твердо установлено, что в системе материальных точек, между которыми действуют центральные силы, живая сила зависит только от конфигурации и от некоторой функции сил, определяемой этой конфигурацией. Термин «энергия» для живой силы применил в 1807 г. Томас Юнг (1773-1829), а понятие «работа» - в 1826 г. Жан Виктор Понселе (1788-1867).

Затем была установлена невозможность построить чисто механически perpetuum mobile. Что это не можетбыть достигнуто также никакими другими средствами, было в конце XVIII столетия, пожалуй, всеобщим убеждением; по крайней мере, Французская Академия решила в 1775 г. не принимать больше на рассмотрение мнимых решений этой проблемы. Какой положительный выигрыш получила наука из этого так отрицательно звучащего воззрения, показало, однако, лишь XIX столетие.

Первый, кто поставил в связь теплоту с работой, был Сади Карно, который, однако, ошибочно считал, что теплота есть неизменная по количеству субстанция (гл. 7). Лишь в 1878 г., когда закон сохранения энергии был уже давно признан, была издана забытая статья рано умершего Карно, в которой он отказался от этого ошибочного исходного пункта и без вывода дал вполне правильно механический эквивалент теплоты. На ход истории Карно больше влияния не имел *).

*) См. об этом Plank, Das Prinzip der Erhaltung der Ener-gie, 2. Auflage, Leipzig und Berlin, 1908, S. 17. Русский перевод: Макс План к, Принцип сохранения энергии, М. - Л., 1938.

Давно было известно, что при трении тел их температура повышается. Теория, рассматривавшая теплоту как субстанцию, пыталась объяснить этот факт всевозможными гипотезами о трении. Они были опровергнуты Вениамином Томсоиом (позднее граф Рум-форд, 1753-1814). В 1798 г. он довел до кипения довольно большое количество воды, приводя при помощи лошадей во вращение тупое сверло в канале ствола пушки; теплоемкость металла не испытала изменения, требуемого теорией субстанциональности теплоты. Гемфри Дэви (1778-1829) доказал в 1799 г. то же самое, подвергая посредством часового механизма трению два куска металла под воздушным насосом.

В первые десятилетия после 1800 г. **) можно часто встретиться с идеей, что существует «сила», которая выступает, смотря по условиям, в виде движения, химического сродства, электричества, света, теплоты, магнетизма, причем любая из этих форм может превращаться в остальные. Чтобы превратить эту смутную идею в ясное понятие, надо было найти общую меру этой «силы». Шаги в этом направлении предприняли различные исследователи, каждый в своем роде.

**) См. названное сочинение М. Планка, стр. 23 и 24.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука