Читаем История физики полностью

Попутно упомянем еще об одном достижений, которое, хотя и имеет более внешний характер, все же имело для физики очень большое значение. 2 июня 1799 г. Законодательное собрание в Париже приняло килограмм за единицу массы, а метр - за единицу длины. Вместе с более старой единицей времени, секундой, эти единицы явились исходным пунктом для CGS-системы (система сантиметр - грамм - секунда), к которой современная физика приводит все механические, электрические и магнитные единицы.

Акустика образует ветвь механики, которая, однако, особенно сначала, развивалась довольно самостоятельно. Уже в древности знали, что чистые тона в противоположность шумам основаны на периодических колебаниях источника звука. Пифагор (570-496 до н. э.) знал, кроме того, может быть из египетских источников, что длины струн, которые настроены на гармонические интервалы - октавы, квинты и т. д., при прочих одинаковых условиях относятся между собой, как 1:2, 2:3 и т. д. Значение, которое пифагорейцы приписывали числам в своей философии, связано, несомненно, с глубоким впечатлением, которое на них произвело это открытие. Изобретатели органов, широко распространившихся в IX столетии н. э., знали соответствующее правило у органных труб. Но акустическая наука в явной форме еще не участвовала в развитии музыкального искусства в течение двух тысячелетий после Пифагора. Лишь Галилей дал также и здесь решающий толчок для дальнейшего. В упомянутых «Discorsi» 1638 г. он устанавливает частоту как физический коррелат ощущения высоты тона. Он характеризует относительную высоту двух звуков посредством отношения их частот и выводит зависимость частоты колебаний струны от длины, напряжения и массы. Он наблюдал возбуждение колебаний посредством резонанса и объяснил это явление; он также показал особенность стоячих волн на поверхности воды в сосудах, производя колебания посредством трения. Еще дальше пошел его бывший ученик Марен Мерсенн (1588-1648): ему удалось почти в то же время, а именно в 1636 г., дать первое абсолютное определение числа колебаний, измерить скорость звука в воздухе, а также открыть, что струна в большинстве случаев одновременно с основным тоном дает еще гармонические обертоны. Жозеф Совер (1653-1716) сделал те же наблюдения над органными трубами, изучил сущность биений, а также установил на струнах положение узлов и пучностей посредством еще теперь применяемого бумажного «наездника».

Отто Герике доказал экспериментально, что звук, в отличие от света, распространяется не в пустом пространстве. Зависимость скорости звука от сжимаемости и плотности воздуха определил Ньютон в своих «Принципах», хотя его формула была подтверждена опытом лишь тогда, когда в 1826 г. Лаплас заменил изотермическое сжатие адиабатическим. Математическая обработка механики в XVIII столетии была полезна также для акустики. Выдающийся экспериментатор Эрнст Фридрих Хладни (1756-1827) в 1802 г. противопоставил давно известным поперечным колебаниям струн и стержней продольные и крутильные колебания, сделал видимыми в своих «звуковых фигурах» узловые линии колеблющихся пластинок и измерил скорость звука не только в воздухе, но и в других газах. Проводимость звука жидкостями долгое время оспаривалась из-за мнимой их несжимаемости, несмотря на прямое наблюдение, сделанное в 1762 г. Вениамином Франклином (1706-1790). Но в 1827 г. Жан Даниэль Колладон (1802-1892) и Якоб Франц Штурм (1803-1855) дали убедительное доказательство распространения звука в воде, определив скорость звука в Женевском озере и найдя ее равной 1,435 • 105см/сек.

В дальнейшем в течение XIX столетия физическая акустика все больше превращалась в учение об упругих волнах. Из оптики в нее были введены идеи интерференции, диффракции и рассеяния на препятствиях. Принцип Допплера, возникший в 1842 г. как оптическая идея (гл. 6), нашел свое первое подтверждение в изменениях высоты тонов, которые воспринимаются, например, в момент, когда свистящий паровоз, пройдя мимо, начинает удаляться. Аналитический метод Фурье (гл. 7), созданный первоначально для решения проблемы теплопроводности, применялся с огромным успехом для изучения звуковых волн, тем более, что разложение любого периодического колебания на колебания синусоидальные соответствует непосредственной психологической реальности; как установил в 1843 г. Симон Ом (1787-1854), ухо может воспринять эти колебания в отдельности. Если же это не удается из-за врожденной недостаточности или недостаточного упражнения, то эти синусоидальные колебания определяют тембр звучания в смеси тонов, как это подчеркнул Гельмгольц в своем «Учении о звуковых ощущениях» (1862).

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука