Рис. 4.4. Схематичное представление классической трихроматической теории Томаса Юнга. Nicolelis M. A. L.
Модель Юнга для функции нейронов была первым примером популяционной, или распределенной, модели нервной системы. В целом такая модель предполагает, что для реализации любой функции мозга требуется совместная активность большого количества нейронов, распределенных по многим областям мозга. Альтернативная модель, в рамках которой отдельные области мозга отвечают за отдельные неврологические функции, называется локализационной моделью. Подробный рассказ о двухсотлетнем противостоянии сторонников распределенной и локализационной моделей можно найти в моей предыдущей книге «За пределами границ». В данной книге достаточно лишь сказать, что для нахождения ответа на вопрос о том, какая из двух моделей лучше описывает способность мозга творить чудеса, потребовалось целых два столетия.
Наиболее твердые свидетельства в пользу справедливости распределенной модели были найдены за последние лет тридцать, когда нейробиологи получили технические возможности для детального изучения нейрофизиологических свойств мозгосетей у людей и животных в свободном состоянии. Благодаря внедрению новых нейрофизиологических методов и (в последние два десятилетия) различных способов визуализации мозга современная нейробиология все больше и больше приближается к пониманию того, что за работу мозга отвечают не отдельные нейроны, а популяции взаимодействующих нейронов, формирующих обширные нейронные сети. И в этом смысле в середине 2018 года мы наконец получили возможность утверждать, что гипотеза Юнга о человеческом мозге одержала окончательную победу.
Наиболее полные нейрофизиологические данные, подтверждающие идею о том, что распределенные популяции нейронов определяют истинные функциональные единицы мозга млекопитающих, включая наш, были получены с помощью одной из новых технологий для изучения свойств мозга животных, которая называется временной многоочаговой мультиэлектродной регистрацией (
Эта технология стала важнейшим элементом в моей работе по созданию интерфейса «мозг-машина» (рис. 4.5), который мы впервые разработали вместе с Джоном Чепином и сотрудниками его лаборатории около двадцати лет назад. В рамках данного подхода запись коллективной электрической активности популяции нейронов, локализованных в одной из многих взаимосвязанных зон коры мозга, используется как источник моторной информации, необходимой для контроля движений таких устройств, как роботизированные руки или ноги или даже целые виртуальные тела. С помощью интерфейса, работающего в режиме реального времени, регистрируемые мозговые сигналы вводятся в математические модели, которые выдают расчетные алгоритмы, специально разработанные для извлечения этих двигательных команд из электрической активности мозга и их преобразования в цифровые контролирующие сигналы, распознаваемые искусственными устройствами. Развитие этой технологии послужило семечком, из которого десять лет спустя вырос проект «Снова ходить».