Поскольку человеческий мозг способен отображать и шенноновскую, и гёделевскую информацию, а также из-за невозможности нахождения идеальной корреляции между ними, в рамках традиционного научного подхода перед нами встает серьезнейшая проблема. Конкретный физический объект, который мы называем человеческим мозгом, занимает весьма специфическое место среди объектов изучения естественных наук. В этом случае внешняя информация (цифровая и формальная) никогда не сможет полностью описать всю реальность, описываемую внутренней информацией (аналоговой и интегральной). Именно эта внутренняя информация обладает уникальностью, возникающей в результате слияния информации и материи в мозге — без сомнения, самом мощном вычислительном инструменте, дарованном нам эволюцией.
В целом различия между шенноновской и гёделевской информацией можно описать следующим образом: информация Шеннона символическая; это означает, что получатель сообщения, содержащего информацию Шеннона, должен расшифровать ее, чтобы извлечь какой-то смысл. И для этого ему, понятное дело, нужно знать ключ шифрования до получения сообщения, и если в самом сообщении ключ отсутствует, информация останется недоступной. К примеру, без внешнего ключа для вас не имели бы смысла строки, которые вы сейчас читаете. Смысл сообщения необходим мозгу, чтобы что-то с ним сделать. Информация же Гёделя, напротив, не требует никакого ключа; ее смысл мгновенно распознается мозгом любого человека. Это объясняется тем, что смыслом сообщение наделяет мозг, который получает или создает это сообщение. Как говорит Хомский[11], «в речи самое главное то, что не произносится».
Возможно, вы задаетесь сейчас вопросом: а нужно ли вообще вводить понятие гёделевской информации? Мой ответ — безусловно! Как мы видели, понятие гёделевской информации позволило получить несколько новых и интересных заключений и гипотез. Прежде всего, оно дало нам возможность сформулировать определение организма в качестве компьютера нового класса. Существует много типов искусственных компьютерных устройств: механические вычислительные устройства, такие как счеты и разностная машина Чарлза Бэббиджа, аналоговые компьютеры, такие как логарифмическая линейка, цифровые компьютеры, такие как переносные компьютеры и планшеты, которые мы сегодня так активно используем, а также самые современные квантовые компьютеры. Как мы обсуждали в начале главы, мы с Рональдом предположили, что организмы можно считать особым классом вычислительных устройств. Мы называем их органическими компьютерами: это устройства, в которых вычисления осуществляются при помощи их собственной трехмерной органической структуры.
Наша концепция органических компьютеров применима на разных уровнях организации живых существ — от самых крохотных наномашин, действующих за счет синхронной совместной работы множества взаимосвязанных молекул (таких как белковые комплексы, например АТФ-синтезирующая нанотурбина, или комплексы белков и липидов, как в клеточных мембранах), до групп генов, которые должны работать вместе, чтобы кодировать определенный физический признак, или — в чуть более крупном масштабе — очень сложных микроэлектростанций (хлоропластов и митохондрий), позволяющих растениям и животным жить за счет выработки энергии для групп клеток, формирующих органические ткани, или обширных сетей нейронов в мозге животного, а также мозгосетей, состоящих из отдельных существ, взаимодействующих синхронно в социальных группах животных.
Хотя в органических компьютерах невозможно отделить аппаратную часть от программного обеспечения, такие биологические вычислительные системы могут использовать в своей работе как шенноновскую, так и гёделевскую информацию. Но по мере усложнения органической структуры усиливается роль встроенной гёделевской информации, поскольку из-за своей аналоговой (в том смысле, что она не может быть полностью описана цифровыми символами или сведена к ним) природы она не может быть правильно загружена, извлечена или симулирована цифровой системой. Однако это не означает, что органические компьютеры нельзя программировать. Совсем наоборот. Этой важной теме посвящены главы 7 и 11.