Предположим, ваш компьютер оценивает, насколько хорошо написано эссе. Если вы используете ГО, то компьютер вам просто выдаст финальное решение, что эссе хорошее либо нет, и скорее всего, ответ будет очень близок к тому, как бы оценил это эссе человек. Но вы не сможете понять, почему было принято такое решение, потому что в ГО используются несколько уровней НС, что делает его очень трудно интерпретируемым. Вы не будете знать какой узел НС был активирован, и как эти узлы вели себя вместе, чтобы прийти к этому результату. Если же вы используете МО, например, алгоритм «дерево решений», то там видно какой фактор сыграл решающую роль в определении качества эссе.
Нейронные сети были известны еще в 20 веке, но тогда они были не настолько глубокими, там был всего один или два слоя, и они не давали таких хороших результатов, как другие алгоритмы МО. Поэтому на какое-то время они отошли на второй план. Однако они стали популярны в последнее время, особенно примерно с 2006 года, когда появились огромные наборы данных и сильные компьютерные мощности, в частности, видео карты и мощные процессоры, которые стали способны создавать более глубокие слои НС и делать вычисления более эффективно.
По этим же причинам, ГО является достаточно дорогим. Потому что, во-первых, сложно собрать большие данные по определенным признакам и, во-вторых, серьезные вычислительные способности компьютеров – тоже достаточно дорогое удовольствие.
Если вкратце, то каким образом работает ГО. Предположим, наша задача вычислить сколько единиц транспорта и какой именно транспорт (то есть автобусы, грузовики, машины или велосипеды) проходит через определенную трассу в день, чтобы в дальнейшем распределить полосы движения.
Для этой цели нам надо научить наш компьютер распознавать виды транспорта. Если бы мы решали эту задачу с помощью МО, мы бы написали алгоритм, в котором указывали бы характеристики машин, автобусов, грузовиков и велосипедов, например, если количество колес 2, то мотоцикл, если длина движущегося средства более 5 метров, то грузовик либо автобус, если много окон, то автобус, и т.д. Но как понимаете, здесь много подводных камней. Например, автобус может быть затонированным и будет трудно понять, где там окна, либо грузовик может выглядеть как автобус или наоборот, да и крупные машины пикапы выглядят как некоторые небольшие грузовики.
Поэтому другой вариант решения этой задачи, это загрузить большое количество изображений с разными видами транспорта в наш компьютер и просто указать ему, на каких изображениях изображен мотоцикл, автомобиль, грузовик или автобус. Компьютер сам начнет подбирать характеристики, по которым можно определить, что за вид транспорта изображен и как их можно отличить друг от друга. После этого мы загрузим еще некоторое количество изображений и протестируем насколько хорошо компьютер справляется с задачей. Если он будет ошибаться, мы укажем ему, что вот здесь ты ошибся, здесь не грузовик, а автобус. Компьютер, в свою очередь, вернется назад к своим алгоритмам (это называется backpropagation) и внесет туда какие-то изменения, и мы начнем заново по кругу до тех пор, пока компьютер не начнет угадывать, что изображено на картинке с очень большой долей вероятности. Это и называется глубокое обучение на основе нейронных сетей. Как вы понимаете, это может занимать достаточно долгое время, может быть несколько недель, в зависимости от сложности поставленной задачи, также требует наличия большого количества данных, желательно, чтобы было от миллиона изображений и выше, и все эти изображения должны либо быть промаркированы, либо это должен делать человек, но это будет очень затратно по времени.
Давайте еще раз сравним МО и ГО по разным параметрам.
Если суммировать:
ГО является подобластью МО, и они оба подпадают под более широкое определение ИИ.
МО использует алгоритмы, чтобы разбирать данные, обучаться на их основе, и принимать взвешенные решения на основе обученного.
ГО делает то же самое, так как оно тоже является разновидностью МО, но специфика ГО в том, что при нем алгоритмы структурируются в несколько слоев, чтобы создать искусственную нейронную сеть, которая может тоже обучаться и принимать умные решения.
МО может использоваться при небольших наборах данных. И на маленьких объемах данных, МО и ГО имеют примерно одинаковую эффективность, но при возрастании объемов данных, ГО намного выигрывает по эффективности.
В МО мы сами задаем характеристики, на которые будут опираться наши алгоритмы. В примере с определением цены квартиры, мы сами указываем параметры, от которых будет зависеть цена, например, метраж, расстояние от метро, возраст дома, район и т.д. А в ГО, компьютер или можно сказать нейронная сеть сама методом проб и ошибок выводит определенные параметры и их вес, от которых зависят наши выходные данные.
По времени обучения алгоритмов, ГО как правило занимает больше времени чем МО.