Все теоретические изыскания в области теории вычислений, теории информации, кибернетики и других наук в конечном итоге приводят к развитию вычислительной техники как прикладной дисциплины, рассматривающей вопросы создания и программирования универсальных вычислительных машин. Попытки создать механическую машину для вычислений предпринимались со времён, наверное, Блёза Паскаля, и первым в этом преуспел наш соотечественник Семён Николаевич Корсаков, который в 1830-х годах создавал первые «интеллектуальные машины» на перфокартах. Хотя в те же самые годы английский математик Чарльз Бэббидж разрабатывал проект универсальной цифровой вычислительной машины, до реализации дело у него не дошло. Несмотря на всё это, основы современной вычислительной техники были заложены Джоном фон Нейманом, который разработал принципы построения архитектуры универсальных вычислительных машин. Впрочем, первый компьютер в современном понимании сделал немецкий инженер Конрад Цузе, он же разработал и первый язык программирования высокого уровня, однако из-за военно-политических особенностей мира в те времена работы Цузе оставались малоизвестными. После Второй мировой войны работы над созданием универсальных компьютеров велись во всё ускоряющемся ритме, который выдерживается до сих пор (так называемый «закон Мура»).
Однако по мере продвижения в деле создания всё более мощных вычислительных систем становилось ясно, что разработать интеллект
И вот в 1943 г. американские нейрофизиолог Уоррен Мак-Каллок и математик Уолтер Питтс публикуют статью, которая открыла миру новую вычислительную модель, основанную на понятии искусственного нейрона. Да, эта модель была довольно упрощённой и не принимала во внимание большое количество свойств органических нейронов, однако она позволяла производить вычисления. Эта статья фактически открыла широчайшее направление исследований, которое сегодня превалирует в области искусственного интеллекта – искусственные нейронные сети. Вслед за У. МакКалоком и У. Питтсом следует отметить таких учёных, как канадский физиолог Дональд Хебб, который описал принципы обучения искусственного нейрона (он предложил первый работающий алгоритм обучения искусственных нейронных сетей), а также американский нейрофизиолог Фрэнк Розенблатт, который разработал на искусственных нейронах устройство, моделирующее процесс восприятия, – перцептрон.
Но всё, как обычно, оказалось не таким простым, как казалось. Несмотря на то что исследователям удалось смоделировать один нейрон и составить из таких моделей нейронную сеть, сознания в ней так и не зародилось. С одной стороны, это было связано с тем, что на тех вычислительных мощностях, которые были доступны учёным в середине XX века, можно было смоделировать нейронную сеть, состоящую из пары сотен нейронов и нескольких слоёв. Такой объём совсем не соответствует десяткам миллиардов нейронов в головном мозге человека с сотнями тысяч связей для каждого нейрона. С другой стороны, становилось понятно, что «карта не является местностью», так что ждать самозарождения сознания в нейронной сети, даже если она будет очень сложной, слишком странно. Поэтому исследователи обратились к такой науке, как психология.