Читаем Исаак Ньютон. Его жизнь и научная деятельность полностью

Эти законы уже дали эмпирически построенный план мироздания. Открыв свой третий закон, Кеплер пришел в такое восторженное состояние, что ему показалось, будто он бредит. К своим открытиям он отнесся как поэт. Вселенная представилась ему стройной гармонией. В 1619 году Кеплер издал знаменитую “Гармонию мироздания”, в которой был на расстоянии одного шага от открытия Ньютона и все-таки не сделал его. Мало того что Кеплер приписывал движения планет некоторому взаимному притяжению, он даже готов был принять закон “квадратной пропорции” (то есть действия, обратно пропорционального квадратам расстояний), однако вскоре отказался от него и вместо этого предположил, что притяжение обратно пропорционально не квадратам расстояний, а самим расстояниям. В трактате о движении планеты Марс Кеплер говорит, что несомненно между планетами должно существовать притяжение. Он утверждал также, что приливы зависят от лунного притяжения и что неправильности в движениях Луны, открытые Тихо Браге, обусловливаются совместным действием Солнца и Земли. При всем том, Кеплеру не удалось установить механических начал им же открытых законов планетного движения. Непосредственными предшественниками Ньютона в этой области были его соотечественники Джильберт и в особенности Гук. В 1660 году Джильберт издал книгу “О магните”, в которой сравнивал действие Земли на Луну с действием магнита на железо. В другом сочинении Джильберта, напечатанном уже по его смерти, сказано, что Земля и Луна влияют друг на друга как два магнита, и притом пропорционально своим массам. Но всего ближе к истине подошел Роберт Гук, современник и соперник Ньютона. 21 марта 1666 года, то есть незадолго до того времени, когда Ньютон впервые глубоко вник в тайны небесной механики, Гук прочел на заседании Лондонского королевского общества отчет о своих опытах над изменением силы тяжести в зависимости от расстояния падающего тела относительно центра Земли. Сознавая неудовлетворительность своих первых опытов, Гук придумал измерять силу тяжести посредством качания маятника – мысль в высшей степени остроумная и плодотворная. Два месяца спустя Гук сообщил в том же обществе, что сила, удерживающая планеты в их орбитах, должна быть подобна той, которая производит круговое движение маятника. Значительно позднее, когда Ньютон уже готовил к печати свой великий труд, Гук независимо от Ньютона пришел к мысли, что “сила, управляющая движением планет”, должна изменяться в “некоторой зависимости от расстояний”, и заявил, что “построит целую систему мироздания”, основанную на этом начале. Но здесь-то и обнаружилось различие между талантом и гением. Счастливые мысли Гука так и остались в зачаточном состоянии: у Гука не хватило сил справиться со своими гипотезами, и слава открытия всемирного тяготения досталась и должна была достаться Ньютону.

Ньютон никогда не мог бы развить и доказать своей гениальной идеи, если бы не обладал могущественным математическим методом, которого не знал ни Гук, ни кто-либо иной из предшественников Ньютона. Мы говорим об анализе бесконечно малых величин, известном теперь под именем дифференциального и интегрального исчислений.

Задолго до Ньютона многие философы и математики занимались вопросом о бесконечно малых, но ограничились лишь самыми элементарными выводами. Еще древние греки употребляли в геометрических исследованиях способ пределов, посредством которого вычисляли, например, площадь круга. Особенное развитие дал этому способу величайший математик древности Архимед, открывший с его помощью множество замечательных теорем. Кеплер и в этом отношении ближе всех подошел к открытию Ньютона. По случаю чисто житейского спора между покупщиком и продавцом из-за нескольких кружек вина Кеплер занялся геометрическим определением емкости бочкообразных тел. В этих исследованиях видно уже весьма отчетливое представление о бесконечно малых. Так, Кеплер рассматривал площадь круга как сумму бесчисленных весьма малых треугольников или, точнее, как предел такой суммы. Позднее тем же вопросом занялся итальянский математик Кавальери. В особенности много сделали в этой области французские математики XVII века Роберваль, Ферма и Паскаль. Но только Ньютон и несколько позднее Лейбниц создали настоящий метод, давший огромный толчок всем отраслям математических наук.

По замечанию Огюста Конта, дифференциальное исчисление, или анализ бесконечно малых величин, есть мост, перекинутый между конечным и бесконечным, между человеком и природой: глубокое познание законов природы невозможно при помощи одного грубого анализа конечных величин, потому что в природе на каждом шагу – бесконечное, непрерывное, изменяющееся.

Ньютон создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии