Технические и физические противоречия будут, так или иначе, формулироваться либо в понятиях, либо в суждениях. Например, для глажения белья нужно орудие (инструмент, устройство, приспособление), которое является горячим, чтобы ткань разглаживалась при нагревании, и одновременно холодным, чтобы его можно было держать в руках. Одно и тоже тело не может быть и горячим, и холодным одновременно. Это физическое противоречие! Но очевидно, такое устройство существует и называется утюг а противоречие разрешается разнесением в пространстве его противоречивых свойств: гладящая поверхность горячая, а рукоятка холодная. Это очень простой и наглядный пример, но не всё бывает так просто.
ВОПРОС № 87
Какие бывают противоречия?
Наверное, многих не устроит такая упрощённая классификация противоречий: в понятии или в суждении. Тогда можно предложить парадоксальную классификацию! Нет такой области, где нет противоречий, поэтому можно классифицировать, называя противоречие по имени области из которой оно взято. Например, административное противоречие, организационное противоречие, физическое противоречие, математическое противоречие, химическое противоречие, техническое, экономическое, биологическое, эстетическое и т. д.
И каждое противоречие ждет, что кто-то его разрешит. Что значит «разрешит»? Это значит, найдётся такое решение проблемы, в котором противоречивые стороны как бы исчезнут, «скроются с глаз долой», вроде как в случае с утюгом.
Но, можно биться об заклад, найдется немало читателей, которые захотят поспорить. А как же непротиворечивость арифметики или математического анализа? Увы, и в них есть противоречия.
Конечно, на сегодня эти дисциплины сформулированы с такой тщательностью, что нам остается довольствоваться лишь противоречием в понятиях!
Так понятие числа внутренне противоречиво, поскольку всякое число одновременно является обозначением, как количества, так и номера единицы в ряду чисел. Например, число «пять»: это и пять единиц и пятая единица в ряду целых чисел, то есть и одно, и многое. А в математическом анализе главное противоречие упрятано в понятии бесконечно малой величины, которая всё время стремится к нулю, но никогда его не достигает, причем это стремление происходит вне времени, что само по себе совершенно непонятно.
Здесь, по опыту фактического автора этого раздела С. В. Ёлкина, «…читатели должны разделиться на примерно две равные группы. Одни могут принять такую позицию, а другие нет. С этим противоречием, противоречием во взглядах на противоречие, пока поделать ничего нельзя. Честно признаюсь, несмотря на весь мой опыт, я его разрешить не могу, и никто не может, вот уже несколько тысяч лет».
Но есть одно предложение — набраться терпения! Даже тот, кто с нами не согласен, всё равно приобретёт ценный опыт.
ВОПРОС № 88