На странице 113 мы процитировали слова самого М. Планка, из которых следовало, что квантовая природа мира проявляется лишь тогда, когда изучаемые величины соизмеримы с постоянной Планка (сама постоянная Планка очень мала). С учетом этого обстоятельства естественно перейти к рассмотрению таких микрообъектов, как атомы и электроны. Начнем с электронов. Здесь мы сразу сталкиваемся с двумя принципиально различными случаями. Первый— это случай свободных электронов. Электрон можно считать свободным, если расстояния от него до других электронов, атомных ядер или каких-либо иных заряженных частиц настолько велики, что можно пренебречь электромагнитным взаимодействием. Интересно, что электрон может быть в свободном состоянии не только в вакууме, но и, например, в кристаллическом твердом теле. Здесь, правда, дело обстоит несколько иначе, подробнее мы рассмотрим этот вопрос ниже, а сейчас ограничимся лишь замечанием, что при определенных условиях поведение части электронов в кристаллическом твердом теле можно описывать так, как если бы это были свободные электроны.Множество свободных электронов составляет так называемый электронный газ. Электроны в электронном газе ведут себя почти точно так же, как молекулы в обычном газе, и для описания состояний электронного газа справедливы те же статистические законы. Применительно к электронному газу мы не можем сказать практически ничего нового.Другой случай — это когда электрон находится в атоме, точнее говоря, взаимодействует с атомным ядром и другими электронами атома или же находится в кристаллическом твердом теле и (это другой случай, противоположный рассмотренному выше) взаимодействует практически со всеми ядрами и большинством других электронов.Рассмотрим пока поведение электрона в атоме. Еще Н. Бором было показано, что в атоме электрон может принимать строго определенные состояния, каждое из которых характеризуется строго определенным значением энергии. Н. Бор первый установил, что для каждого данного состояния момент количества движения электрона отличается от возможных моментов количества движения в других состояниях на величину, кратную постоянной Планка.
КАК СЕБЯ ЧУВСТВУЕТ АТОМ!
Электрон в атоме может переходить из данного состояния в состояния, характеризуемые меньшими значениями энергии, при этом, как правило, испускается квант электромагнитного излучения. Или, наоборот, в состояния, характеризуемые более высокими значениями энергии, тогда переход осуществляется, как правило, после того, как атом подвергся какому-либо внешнему воздействию, например, он поглотил квант электромагнитного излучения или провзаимодействовал с другой какой-либо частицей.Если энергия одного из электронов в атоме больше некоторого нормального значения, принимаемого за энергию основного состояния, то такой атом называется возбужденным или, иначе, находящимся в возбужденном состоянии. Обычно возбужденное состояние атома не может существовать долго. Либо самостоятельно, либо опять-таки под воздействием какой-либо внешней причины такой атом переходит из возбужденного состояния в основное, излучая при этом один или несколько квантов.Мы столь подробно рассмотрели здесь, казалось бы, общеизвестные вещи для того, чтобы задать основной вопрос: можно ли говорить об энтропии атома?Начнем с простейшего атома — атома водорода. Он состоит из ядра, содержащего один-единственный протон, и одного-единственного электрона, который в каждый момент времени находится в одном из разрешенных для данного атома состояний. Часто говорят также, чтоэлектрон в атоме находится на данной орбите или в пределах данной оболочки. Современная физика убедительно показала, однако, что никаких электронных орбит в атоме нет и не может быть. Поэтому слова «орбита» или «оболочка», используются лишь по традиции и представляют собой синонимы выражений «состояние, характеризуемое данным значением энергии».Вернемся к атому водорода. Можно ли говорить, что электрон в атоме или сам атом характеризуется некоторым значением энтропии? На этот вопрос может быть дан лишь один определенный ответ. Энтропия есть логарифм статистического веса. А каждое состояние электрона в атоме, или, что то же самое, каждое состояние атома может быть реализовано единственным способом. Поэтому если даже говорить о статистическом весе данного состояния, то он всегда будет равен единице, а энтропия, соответственно, всегда будет равна нулю. То же самое справедливо и для более сложных атомов.Из того обстоятельства, что энтропия отдельного атома всегда равна нулю, можно сделать вывод, что атом — это в высокой степени информированная система. И это будет соответствовать реальности. Ведь каждый электрон в атоме в точности знает, какие состояния для него разрешены, а какие запрещены. Другой вопрос: откуда электрон знает о разрешенных и запрещённых состояниях? На этот вопрос мы также постараемся ответить, но несколько позже.
ЗВЕЗДА ЭКРАНА