Рис. 4.3. Логические функции F1, F2, F3,… F16 двух аргументов
Функция
Функция
называется функцией запрета по логической переменной
Функция
Функция
называется функцией запрета по логической переменной
Функция
Функция
называется функцией исключающее «ИЛИ».
Функция
Функция
называется функцией Пирса.
Функция
называется функцией эквиваленции.
Функция
называется функцией отрицания (инверсии) по логической переменной
Функция
Функция
называется функцией отрицания (инверсии) по логической переменной
Функция
Функция
называется функцией Шеффера.
Функция
Среди перечисленных выше логических функций переменных можно выделить несколько логических функций, с помощью которых можно выразить другие логические функции. Операцию замены одной логической функции другой в алгебре логики называют операцией суперпозиции или методом суперпозиции. Например, функцию Шеффера можно выразить при помощи логических функций дизъюнкции и отрицания, используя закон де Моргана:
Логические функции, с помощью которых можно выразить другие логические функции методом суперпозиции, называются базовыми логическими функциями. Такой набор базовых логических функций называется функционально полным набором логических функций. На практике наиболее широко в качестве такого набора используют три логических функции: конъюнкцию, дизъюнкцию и отрицание. Если логическая функция представлена с помощью базовых функций, то такая форма представления называется нормальной. В предыдущем примере логическая функция Шеффера, выраженная через базовые функции, представлена в нормальной форме.
При помощи набора базовых функций и соответствующих им технических устройств, реализующих эти логические функции, можно разработать и создать любое логическое устройство или систему.
В настоящее время существует достаточно много программных продуктов, с помощью которых можно реализовать различные логические функции и форму их представления, например в виде таблиц истинности. Логические функции широко используются и в программе
Рис. 4.4. Диалоговое окно «Мастер функций – шаг 1 из 2»
Как видно из рис. 4.4, в состав логических функций программы
Реализуем с помощью логических функций ЕСЛИ и И модифицированную таблицу истинности логической функции
Рис. 4.5. Реализация модифицированной таблицы истинности логической функции
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии