На этой схеме подключение согласующего трансформатора выполнено непосредственно к транзисторам VT1 и VT2, входящим в состав микросхемы TL494. Выходные транзисторы включены по ключевой схеме. Эмиттеры обоих транзисторов соединены с общим проводом. Их коллекторы нагружены первичными обмотками трансформатора T. Обмотки включены последовательно, точка соединения выведена на шину питания микросхемы TL494. Подключение трансформатора Т должно быть обязательно выполнено в соответствии с рис. 3.7. Начала обмоток трансформатора на рисунке обозначены точками. Еще одна важная особенность использования трансформатора в схеме на рис. 3.7 заключается в том, что его обмотки подключаются между коллекторами выходных транзисторов и шиной питания без резисторов, ограничивающих ток через транзисторы. Индуктивное сопротивление первичных обмоток на частоте работы преобразователя должно быть достаточно высоким, чтобы чрезмерно большой ток коллектора не повредил структуру выходных транзисторов.
В двух предыдущих схемах промежуточных усилителей размах напряжения на коллекторах внешних транзисторов был меньше уровня напряжения питания каскада. Это происходило из-за включения последовательно с первичной обмоткой трансформатора ограничивающих сопротивлений. Образовывался делитель, состоящий из сопротивления резистора и индуктивного сопротивления первичной обмотки. В схеме, приведенной на рис. 3.7, подобный эффект не наблюдается, и размах напряжения на коллекторах выходных транзисторов даже несколько превышает уровень питающего напряжения. Для защиты транзисторов от перенапряжения, возникающего при работе на индуктивную нагрузку, между шиной питания и коллектором каждого транзистора установлено по диоду – D1 и D2. Аноды диодов подключены к коллекторам транзисторов, а катоды – к шине питания каскада. Большую часть рабочего цикла транзисторы находятся в закрытом состоянии, которое поддерживается низким уровнем напряжения на их базах, что видно из диаграмм 7 и 8 (см. рис. 2.8). Импульсы управления положительной полярности подаются на каждый из транзисторов со смещением по времени. Когда на базу VT1 воздействует импульс высокого уровня, он открывается и переводится в насыщение. В течение всего времени действия этого импульса на базе VT1 второй транзистор выходного каскада – VT2 – остается в закрытом состоянии. Ток протекает только через открытый транзистор VT1 и первичную обмотку W1 трансформатора T. Резкое изменение тока, протекающего через обмотку W1, вызывает возникновение магнитного потока, результатом действия которого будет возбуждение ЭДС в обеих вторичных обмотках. Обмотка W1 включена синфазно с вторичной обмоткой W4. На выводе обмотки W4, подключенной к базе силового транзистора Q2, появляется импульс ЭДС положительной полярности. Так как обмотка W3 включена противофазно обмотке W4, то на ней в этот момент импульс ЭДС будет иметь отрицательную полярность. Появление импульсных сигналов на вторичных обмотках трансформатора T приходит на смену состоянию покоя, так как в течение действия нулевых уровней на базы транзисторов VT1 и VT2 напряжения на вторичных обмотках согласующего трансформатора T равны нулю.
С окончанием действия положительного импульса на базе транзистора VT1 схема усилителя вновь попадает во временной интервал формирования сигнала паузы между управляющими импульсами. Напряжения на вторичных обмотках опять принимают нулевое значение. Оно сохраняется до прихода следующего управляющего импульса. Если на предыдущем этапе подача импульса на транзистор VT1 вызывала открывание транзистора Q2, то следующий импульс будет поступать на базу транзистора VT2, работа которого оказывает воздействие на второй транзистор полумостового усилителя мощности. По фронту импульса открывается транзистор VT2, и ток начинает протекать через первичную обмотку W2 трансформатора Т. Следствием процессов, которые вызывают ток этой обмотки, будет появление положительного импульса ЭДС на обмотке W3 и открывание транзистора Q1. Соответственно, в это же время произойдет усиление степени закрывания транзистора Q2 в результате действия на обмотке W4 импульса отрицательной полярности.
Как и в предыдущем примере схемы усилительного каскада, идентичность параметров плеч усилителя гарантирует симметричность циклов перемагничивания сердечника согласующего трансформатора и исключение его насыщения. Небольшое изменение магнитных характеристик сердечника может наблюдаться при работе микросхемы TL494 в циклах устранения отклонений выходных напряжений от номинальных уровней. В этом случае импульсы, воздействующие на транзисторы VT1 и VT2 и определяющие время протекания токов через каждую из обмоток трансформатора, будут иметь несколько различную длительность. Если текущее небольшое перемагничивание сердечника вызвано компенсацией повышения выходного уровня вторичного напряжения, то впоследствии при устранении понижения выходного уровня напряжения будет происходить противоположное перемагничивание магнитопровода. То есть усредненный баланс намагниченности будет соблюдаться.
Принципы функционирования схемы, представленной на рис. 3.7, близки или аналогичны логике работы промежуточного усилителя, входящего в состав схемы по рис. 3.2. В базовой схеме применяются внешние дополнительные транзисторы, а также установлен резистор, ограничивающий ток, проходящий через эти транзисторы. Еще одной особенностью схемой является то, что в течение паузы между импульсами управления через транзисторы Q3 и Q4 (см. рис. 3.2) протекают токи и эти транзисторы находятся в состоянии насыщения. Управляющий импульс переводит один из транзисторов в закрытое состояние. Порядок намотки первичной и вторичных обмоток согласующего трансформатора на обеих схемах идентичен.
На рис. 3.8 показан фрагмент схемы промежуточного усилителя, которая используется достаточно редко, но как один из вариантов построения подобного блока имеет смысл детально рассмотреть принцип ее работы.