Читаем Импульсные блоки питания для IBM PC полностью

На принципиальной схеме не показан сетевой выключатель, так как он относится к системному модулю компьютера. В самом блоке питания по входу первичной электрической сети установлен предохранитель – необходимый элемент системы защиты. Предохранитель предназначен для отключения импульсного источника питания от питающей сети при возникновении в нем неисправностей и не используется для сохранения работоспособности активных элементов источника питания, так как обладает высокой тепловой инерционностью. Процессы пробоя развиваются лавинообразно, остановить их может только электронная защита. Предохранитель способен лишь предотвратить лавинообразное нарастание процесса, который разрушает конструктивные элементы блока питания и повреждает проводники печатной платы.

Терморезистор TR1, также подключенный по входу первичной цепи, имеет отрицательный коэффициент сопротивления. Этот элемент имеет максимальное значения сопротивления в холодном состоянии, то есть в момент включения источника. Основным назначением терморезистора TR1 является ограничение пускового тока, протекающего по входной цепи блока питания. При включении источника питания возникает скачок тока, так как конденсаторы сглаживающего фильтра C10 и C11 в начальный момент времени не заряжены и их сопротивление крайне мало. По мере их заряда уровень тока, протекающего по входным цепям блока питания, постепенно снижается. Под действием тока терморезистор TR1 медленно разогревается, а его сопротивление снижается. После выхода на рабочий режим сопротивление TR1 имеет значение десятых долей Ома и практически не влияет на общие энергетические показатели блока питания.

После терморезистора и предохранителя в первичную цепь источника питания включен сетевой фильтр. В конструкции фильтра использованы элементы, которые должны обеспечивать значительный уровень затухания помех, проникающих в источник питания и исходящих из него. В отсутствие сетевого фильтра блок питания можно применять только в идеальных условиях, при полном отсутствии приборов, способствующих возникновению помех. Но даже в этом случае целесообразность его установки вполне оправдана, так как фильтр значительно ограничивает уровень паразитных колебаний, проникающих в сеть от самого источника с импульсным преобразователем. Конструкцию входного фильтра рассчитывают из условий, обеспечивающих работу блока питания при кратковременных бросках и провалах сетевого напряжения. Стандарт отечественной сети переменного тока допускает изменение напряжения в диапазоне 220 В ±15 %. Но стандарт не может предусмотреть уровней кратковременных импульсных помех, источником которых являются приборы и устройства на основе электродвигателей, электромагнитных пускателей. Импульсные помехи от таких приборов могут проникать во вторичные цепи источника питания и оказывать негативное влияние на функционирование нагрузочных элементов. Наличие входного фильтра способствует устранению или значительному ослаблению влияния внешних помех на работоспособность блока питания и элементов нагрузки, подключенных к его вторичным цепям.

Помехоподавляющий фильтр представляет собой звено П-типа, состоящее из конденсаторов C1 – C4 и дросселя T, две обмотки которого намотаны в одном направлении на общий сердечник из материала с высоким значением магнитной проницаемости. Обмотки имеют одинаковое количество витков. Конденсаторы C3 и C4 включены последовательно, точка их соединения подключается к корпусной клемме блока питания. В отечественной сети выполняется заземление нулевого провода и поэтому точка соединения обязательно должна подключаться через корпус к «нулю». Таким образом, один из конденсаторов C3, C4 оказывается зашунтированным, а второй подключается параллельно конденсатору C2. Если корпус источника питания с таким фильтром оставить без подключения к защитному «нулю», то в средней точке емкостного делителя образуется напряжение, равное половине входного питающего напряжения.

Емкостное сопротивление конденсаторов C1 и C2 фильтра на частоте питающей сети достаточно большое и составляет примерно 145 кОм. Такое сопротивление не оказывает заметного влияния на помехи с частотой, близкой к частоте промышленной сети. Импульсные же помехи, имеющие спектр от десятков килогерц до нескольких мегагерц, замыкаются через малое сопротивление этих конденсаторов, и поэтому происходит значительное снижение их уровня. Полностью нейтрализовать помеху, проникающую из сети, одними конденсаторами не удается, и для более глубокой фильтрации применяется индуктивный элемент – дроссель Т1. По конструкции и техническому смыслу дроссель T1 больше похож на трансформатор, поэтому в специальной литературе иногда его называют нейтрализующим трансформатором. Каждая из обмоток дросселя включена в цепь потенциального проводника. По одной из обмоток протекает ток прямого направления, по второй – возвратный ток. Направление токов противоположно, но их величины абсолютно одинаковы. Токи, протекающие по каждой из обмоток, будут создавать магнитные потоки, равные по величине, но противоположные по направлениям. Взаимно противоположные потоки будут компенсировать друг друга. Ни один из потоков не будет преобладающим, а значит, не будет происходить намагничивание сердечника и индуктивность обмоток дросселя будет иметь максимально возможное значение. Это положение справедливо независимо от уровня тока потребления блока питания. Магнитные потоки, создаваемые колебаниями помехи, также взаимно компенсируются. Индуктивное сопротивление обмоток дросселя прямо пропорционально частоте протекающего тока. На частоте сети его величина относительно небольшая, но для высокочастотных колебаний помех она значительна. Затухание помех растет по мере увеличения их частоты. Установка отдельных дросселей на каждом отдельном проводнике будет производить значительно меньший эффект. В выпрямителе сетевого напряжения устанавливаются НЧ диоды. Ток, протекающий через сетевой выпрямитель, имеет пульсирующий характер, определяемый частотой переключения силовых транзисторов импульсного преобразователя. В моменты изменения полярности напряжения на диодах D1 – D4 выпрямителя происходит перезарядка их внутренней емкости. Этот процесс занимает определенный временной интервал. Диоды, изменяющие свое проводящее состояние на закрытое, не могут переключиться мгновенно, и некоторое время остаются открытыми. В это время одна пара диодов еще не закрыта, а вторая – постепенно открывается и начинает пропускать ток. Возникают сквозные токи, которые возбуждают кратковременные помеховые колебания. Подавление помех такого типа выполняют конденсаторы C2 – C4, подключенные к защитному заземлению или «нулю». Все конденсаторы сетевого фильтра рассчитаны на максимальное рабочее напряжение 1 кВ.

С помощью селектора уровня входного напряжения S1 выполняется переключение входной цепи блока питания для работы от сетевого напряжения с номинальными уровнями 220 или 115 В. Переключатель имеет только два состояния: замкнутое и разомкнутое. Разомкнутое состояние переключателя устанавливается, когда напряжение сети равно 220 В. Контакты переключателя замыкаются для подключения блока питания к сети с пониженным напряжением. Естественно, что при сохранении энергетического баланса, ток потребления и соответственно нагрузка на входные цепи источника питания при пониженном входном напряжении увеличивается в два раза по сравнению с режимом работы от 220 В. Действие переключателя достаточно подробно рассмотрено в главе 2 при описании аналогичного узла источника питания для компьютеров ATX форм-фактора. Следует еще раз отметить, что коммутация переключателя S1 при его замыкании переводит схему выпрямителя на работу в режиме удвоителя напряжения. Основная же цель установки переключателя заключается в сохранении уровня постоянного напряжения питания на силовом каскаде. Когда происходит коммутация транзисторов полумостового усилителя, на силовой трансформатор подается импульсное напряжение, полный размах которого равен напряжению питания силового каскада. Сохранение этого напряжения на неизменном уровне позволяет использовать все элементы силового каскада без каких-либо модификаций. В этом случае отпадает необходимость применения транзисторов для силового каскада с повышенным напряжением коллектор-эмиттер, а также не происходит коммутации обмоток трансформатора для изменения коэффициентов трансформации.

Диодный мост выпрямителя нагружен на два электролитических конденсатора C10 и C11, включенных последовательно, а таже на силовой каскад импульсного преобразователя. Конденсаторы входят в состав фильтра, сглаживающего выпрямленное пульсирующее напряжение. Параллельно каждому из конденсаторов С10 и С11 сглаживающего фильтра включены высокоомные резисторы соответственно R17 и R18, создающие цепь разряда конденсаторов при отключении источника питания от сети. Резисторы выбраны с такими номиналами сопротивления, чтобы не оказывать влияния на работу ВЧ преобразователя.

Вся остальная электрическая схема блока питания предназначена непосредственно для генерации, усиления импульсных сигналов и их преобразования во вторичные напряжения, поступающие на элементы нагрузки. Этапы функционирования импульсного преобразователя приведены ниже в последовательности, соответствующей изложению материала в главе 2.

Но прежде чем перейти к детальному разбору функционирования отдельных каскадов, следует дать общую схему развития процессов, происходящих в блоке питания непосредственно после его включения в сеть. Именно начальный этап включения блоков питания для компьютеров AT/XT коренным образом отличается от более поздних модификаций, используемых в ATX системах.

В блоке питания, схема которого представлена на рис. 3.2, нет узла, аналогичного вспомогательному автогенератору ATX преобразователя, от которого блок управления получает первичное питание для запуска генератора импульсных последовательностей. Поэтому одним из основных вопросов при подключении к питающей сети такого источника является обеспечение начального запуска и первичная запитка узла управления. Решение этой проблемы заключается в особой конструкции силового каскада преобразователя и, в частности, в способе подключения трансформатора внешнего возбуждения T2 к базовой цепи транзистора Q5. Вторичная цепь T2 имеет три обмотки. Две из них традиционно подключены к базовым цепям силовых транзисторов Q5 и Q6, а третья – к эмиттеру транзистора Q5 и через конденсатор C15 с первичной обмоткой импульсного трансформатора T4. Базовая цепь каждого силового транзистора соединена со своим коллектором через резистор с большим сопротивлением. Таким образом, через резисторы R27 и R29 на базы транзисторов Q5 и Q6 подается положительное смещение. Благодаря этим двум особенностям происходит полное открывание одного из силовых транзисторов Q5 или Q6, в результате которого на вторичных обмотках появляется импульс напряжения. Этим импульсным напряжением заряжаются емкости конденсаторов C18 и C17, образующие сглаживающий фильтр. Положительная обкладка конденсатора C17 подключена к выводу питания IC1/12 микросхемы ШИМ регулятора. Уровня напряжения на конденсаторах C17 и C18 и энергии их заряда оказывается достаточно для запуска микросхемы IC1 и получения на выходах IC1/8,11 последовательностей импульсов. Через каскады промежуточного усилителя, выполненного на транзисторах Q3 и Q4, импульсы управления подаются в базовые цепи силовых транзисторов Q5 и Q6. Возникает устойчивый колебательный процесс переключения силовых транзисторов, происходящий под управлением импульсов, формируемых схемой управления. Когда импульсные колебания принимают установившийся характер, напряжения на вторичных обмотках нарастают до номинальных уровней, и происходит формирование сигнала «питание в норме». Далее начинает действовать система слежения за выходным уровнем напряжения канала +5 В и регулирования поступления энергии во вторичные цепи. Если нагрузка каналов находится в определенных пределах, источник питания обеспечивает энергетическую поддержку вторичных цепей. При резком и неконтролируемом отклонении уровня нагрузки, приводящего к КЗ по одному из каналов, включается система блокировки схемы управления и отключения силового каскада.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука