Кто же эти новые компаньоны Шеннона по Принстону? Из каких мест? Например, Джон фон Нейман, юное дарование еврейско-венгерского происхождения, который в возрасте шести лет мог острить на древнегреческом или без карандаша и бумаги разделить 93 726 784 на 64 733 647 (или любое другое восьмизначное число). Будучи студентом, он однажды в буквальном смысле довел своего преподавателя до слез восторга, а в колледже на лекции «Нерешенные проблемы в математике» царапал ответы в своем блокноте. Фон Нейману мы обязаны появлением теории игр (традиционное изучение стратегических решений), интеллектуальной начинки современных компьютеров и значительной доли квантовой механики. Шеннон называл его «самым большим интеллектуалом, которого… когда-либо встречал». И это было распространенным мнением. То, что начиналось с фанатичного обожания («Я был выпускником, он – одним из величайших математиков мира», – вспоминал Шеннон), в более поздние годы разовьется в нечто, больше похожее на равное партнерство двух первопроходцев в области искусственного интеллекта.
Или Герман Вейль, бежавший в Америку от нацистов, математик и философ физики. Как математик, Вейль работал над тем, чтобы объединить достижения в квантовой механике с доктринами классической физики. Как философ он воспринимал теорию относительности Эйнштейна не только как поворотную точку в науке, но как новое осмысление связи человеческого самосознания и внешнего мира. Спустя всего два года после того, как Эйнштейн опубликовал свою теорию относительности, Вейль представил свою исчерпывающую трактовку философских принципов релятивизма. «Было ощущение, словно рухнула стена, отделяющая нас от Истины, – ликовал он. – Это еще больше приблизило нас к пониманию некоего замысла, лежащего в основе всего происходящего». Это был отборный, элитный состав, по меркам Шеннона. И он, возможно, с некоторым трепетом сидел в кабинете Вейля, представляя своему новому руководителю программу исследования на следующий год.
Что если математическая модель послания, отправленного по телефонным или телеграфным сетям, имела нечто общее с моделями движения элементарных частиц?
Вейль в целом довольно снисходительно отнесся к работе Шеннона в области генетики (как и сам Шеннон на тот момент), но Клод мог с легкостью обсуждать вопросы современной физики и покорил Вейля тем, что проводил аналогию между таинственной природой кванта, которую пытались разгадать физики, и проблемами применения математических моделей в сфере связи, которые он только пробовал решить. Что если математическая модель послания, отправленного по телефонным или телеграфным сетям, имела нечто общее с моделями движения элементарных частиц? Что если содержимое любого послания и траекторию любой частицы можно описать не как механические движения или хаотичную бессмыслицу, а как хаотично выглядящие процессы, которые подчиняются законам вероятности – то, что физики называют «стохастическими» процессами? Вспомните о «колебаниях курса акций или о бредущем наугад по тротуару пьяном человеке», вспомните также о соло на кларнете, все эти события точно не назовешь подчиненными какой-то системе: возможно, «интеллект» и электроны похожи в этом смысле, так как они совершают случайные перемещения внутри вероятностных границ. Это заинтересовало Вейля.
Подобное предположение стало ранним намеком на то, что математика передачи сообщения могла сказать больше, чем самая эффективная модель телефонной сети, предложить нечто более фундаментальное в том, что касается таинственного «плана», о котором догадывались великие физики. Да, это было всего лишь предположение, возможно, полезная аналогия и ничего более. Но с одобрения Вейля Шеннон смог посвятить все свое время изучению вопросов, связанных с «интеллектом», которые он впервые поднял в своем письме Бушу.
И, конечно же, в этом списке был Эйнштейн. Этот великий ученый видел, как нацисты сжигают его книги, и нашел свое имя в списке приговоренных к смерти. Он, как и Вейль, бежал из Германии и в 1933 году обрел убежище в Принстоне. Существует несколько историй, в которых участвуют одновременно Эйнштейн и Шеннон, и, хотя не все они, вероятно, правдивы, мы приведем их все для полноты картины.