Поэтому в последующие три года окружением Шеннона стали серые коридоры и стены гудящей комнаты, и внутри этой комнаты – стенки маленькой коробки, прикрепленной к анализатору, со 100 переключателями, открывающими и закрывающими путь току, – мир внутри мира. В коробке находились мозги мозга, переключатели и реле, которые управляли машиной и перестраивали ее, пока она вращалась. И «каждое реле», как пишет Джеймс Глейк, «электрический переключатель управляется током (идея цикличности)». Разомкнуть. Замкнуть. И так на протяжении недель и месяцев.
Что произошло, когда Клод Шеннон щелкнул выключателем? Представьте себе переключатель или реле в виде разводного моста для электрического тока: опустив его, переключатель позволит току поступать к месту назначения; подняв, переключатель остановит его поток. Пунктом назначения может быть другое реле, которое тогда будет размыкаться или замыкаться на основе полученных вводных данных. Или же это может быть что-то такое же простое, как маленький электрический фонарик. Все это было таким знакомым для Шеннона, еще со времен Гэйлорда и его самодельной телеграфной линии. В Энн-Арбор эти знания были систематизированы: там Шеннон прилежно чертил электрические схемы вместе с остальными инженерами-электриками. Последовательное соединение: ток должен пройти через оба реле, прежде чем он включит свет; параллельное соединение: ток может свободно проходить либо через один, либо через оба реле.
Это были блоки, которые включали в себя логическую схему с сотней переключателей, прикрепленную к дифференциальному анализатору, или электрическую начинку линий сборки, или систему с миллионом реле, которая направляла работу всей национальной телефонной сети. Там были цепи, сконструированные для передачи тока, когда два реле были замкнуты, но не ноль, одно, или три; были цепи, нарисованные в виде ветвистых деревьев или симметричных дельт или плотных ячеек – вся электрическая геометрия, которую Шеннон чувствовал сердцем. И по старой инженерной традиции все это было сделано вручную, нарисовано шаг за шагом на доске или просто соединено вместе в «животе» машины. Единственным доказательством правильности собранной цепи являлись ощутимые результаты: проходил ли звонок, крутилось ли колесо, поставленное ребром на диске, и зажигался ли свет. Электрические цепи до Шеннона были как дифференциальные уравнения до появления аналогового компьютера: ошибки при каждой попытке до тех пор, пока ошибки не прекращались. Построение электрических схем в те времена было ремеслом со всей той путаницей, ошибками и интуитивным подходом, которые подразумевает «ремесло».
Электрические цепи до Шеннона были как дифференциальные уравнения до появления аналогового компьютера: ошибки при каждой попытке до тех пор, пока ошибки не прекращались.
Но здесь Шеннон был один на один в комнате с машиной, построенной для того, чтобы автоматизировать мысль, решать задачи промышленного характера и при этом эффективно функционировать. А еще чтобы отделить ремесло от математики. И в процессе своей работы он пришел к выводу, что знал другой способ, как автоматизировать процесс мышления – тот, который в конечном счете станет гораздо более действенным, чем аналоговая машина.
Что связывает логику и машину? Вот как ответил на этот вопрос один специалист по логике на стыке девятнадцатого и двадцатого столетий: «Точно так же, как материальная машина является инструментом для экономии физических сил, так же и символическое исчисление является инструментом для экономии интеллектуальных усилий». Логика, подобно машине, была инструментом для демократизации силы: построенная с достаточной точностью и умело, она могла многократно увеличить силу как одаренных людей, так и людей со средними способностями.
В 1930-е годы в мире насчитывалась лишь горстка людей, которые одинаково хорошо владели «символическим исчислением», или строго научной математической логикой, и умением собирать электрические цепи. Звучит это и вправду удивительно: до того, как две эти области знаний соединились в голове Шеннона, мало кто представлял, что они могут иметь нечто общее. Одно дело было сравнить логику с машиной – и совсем иное показать, что машины способны действовать логично.