Читаем Языковая структура полностью

Возьмем такую область, как нахождение в аналитической геометрии уравнений, которые были бы уравнениями кривых второго порядка. Имеются уравнения для круга, эллипса, параболы, гиперболы. Имеется и общее уравнение для кривых второго порядка, которое при помощи простейших допущений превращается в уравнение той или иной отдельной кривой второго порядка. Тот, кто не понимает специфики языкового знака, на этом основании может сказать, что математическое обозначение может быть тоже не одпоплановым, а двухплановым, что доказательством этого служит аналитическая геометрия с ее построением кривых на основании уравнений и что уравнения здесь являются, следовательно, символами не только самих себя, но некоего совершенно нового, а именно пространственного, построения.

Такая критика математической одноплановости основана на игнорировании того единственного предмета математики, который мы в общей форме назвали выше количеством. Пусть одни математические построения указывают на другие, совершенно инородные в сравнении с первыми, являются их принципом или символом. Однако и другие построения в конечном счете тоже оказываются количественными. Тот геометрический круг, который мы получили на основании не геометрического, но алгебраического уравнения круга, возник у нас только в результате известного рода количественных операций. Поэтому количество, взятое как таковое, всегда однопланово, и математическое обозначение этого количества всегда однозначно, как бы различно мы ни понимали те области, которые исчисляются или строятся при помощи количественного принципа.

2. Языковое обозначение всегда имеет своим предметом ту или иную многоплановую структуру, в которой один план не сводим к другому плану. Язык состоит из звуков, указывающих на разные предметы, которые он обозначает. Что общего между звуками, обозначающими данную вещь или событие, и самими этими вещами и событиями? Звук речи есть акустически-артикуляционное явление. Но что акустического содержится в том предмете, который мы обозначили звуками речи? Что акустического и что артикуляционного в таких вещах, как стол, стул, дом, дерево, забор, ворота, двор, дорожки или аллеи во дворе и т.д.? В каждой морфеме, как минимально значащей звуковой единице, не говоря уже о слове как известной совокупности таких морфем и о других более сложных языковых структурах, обязательно содержатся эти два, не сводимых один к другому смысловых плана. Без этой двухплановости не существует языка.

Однако в таком случае позволительно спросить: если такую двухплановую языковую структуру обозначить одноплановой математической формулой, не значит ли это свести языковую двухплановость на смысловую одноплановость и не значит ли это обозначать уже не язык, а что-то совсем другое? Эту невозможность выражения двухплановой структуры при помощи одноплановой не нужно доводить до абсурда, утверждая, что одноплановая структура обозначения вовсе ничего не обозначает. Как мы уже говорили выше, количественное обозначение неколичественного предмета дает очень много, поскольку все неколичественные предметы, т.е. все качества, уж для одного того, чтобы отличаться друг от друга, должны быть прежде всего чем-то одним, чем-то другим, чем-то третьим и т.д. Не считая стол за некую единицу и также не считая стул за некую единицу, мы вообще не можем эти две вещи понять, как именно две, т.е. не можем сравнивать между собой, не можем отличать одну от другой, не можем приписывать им разные свойства, т.е. вообще не можем их воспринимать и мыслить. Что число есть орган познания, это хорошо понимали уже древние пифагорейцы. Но весь вопрос в том, является ли количественное различение предметов в то же время и определением их качества, и можно ли, обозначая предметы, ограничиться только их математическим обозначением? На подобного рода вопросы здравый смысл может ответить только отрицательно.

Итак, математическое обозначение языкового факта не то чтобы решительно ничего в нем не обозначало, но обозначает в нем такую степень его общности, в которой уже теряется конкретность и специфика обозначаемого факта; а это значит, что математическое обозначение в данном случае ничего существенного не обозначает.

<p>Раздел II.</p><p>О МЕТОДАХ ИЗЛОЖЕНИЯ МАТЕМАТИЧЕСКОЙ ЛИНГВИСТИКИ ДЛЯ ЛИНГВИСТОВ</p>
Перейти на страницу:

Похожие книги

Агония и возрождение романтизма
Агония и возрождение романтизма

Романтизм в русской литературе, вопреки тезисам школьной программы, – явление, которое вовсе не исчерпывается художественными опытами начала XIX века. Михаил Вайскопф – израильский славист и автор исследования «Влюбленный демиург», послужившего итоговым стимулом для этой книги, – видит в романтике непреходящую основу русской культуры, ее гибельный и вместе с тем живительный метафизический опыт. Его новая книга охватывает столетний период с конца романтического золотого века в 1840-х до 1940-х годов, когда катастрофы XX века оборвали жизни и литературные судьбы последних русских романтиков в широком диапазоне от Булгакова до Мандельштама. Первая часть работы сфокусирована на анализе литературной ситуации первой половины XIX столетия, вторая посвящена творчеству Афанасия Фета, третья изучает различные модификации романтизма в предсоветские и советские годы, а четвертая предлагает по-новому посмотреть на довоенное творчество Владимира Набокова. Приложением к книге служит «Пропащая грамота» – семь небольших рассказов и стилизаций, написанных автором.

Михаил Яковлевич Вайскопф

Языкознание, иностранные языки