Возьмем такую область, как нахождение в аналитической геометрии уравнений, которые были бы уравнениями кривых второго порядка. Имеются уравнения для круга, эллипса, параболы, гиперболы. Имеется и общее уравнение для кривых второго порядка, которое при помощи простейших допущений превращается в уравнение той или иной отдельной кривой второго порядка. Тот, кто не понимает специфики языкового знака, на этом основании может сказать, что математическое обозначение может быть тоже не одпоплановым, а двухплановым, что доказательством этого служит аналитическая геометрия с ее построением кривых на основании уравнений и что уравнения здесь являются, следовательно, символами не только самих себя, но некоего совершенно нового, а именно пространственного, построения.
Такая критика математической одноплановости основана на игнорировании того единственного предмета математики, который мы в общей форме назвали выше количеством. Пусть одни математические построения указывают на другие, совершенно инородные в сравнении с первыми, являются их принципом или символом. Однако и другие построения в конечном счете тоже оказываются количественными. Тот геометрический круг, который мы получили на основании не геометрического, но алгебраического уравнения круга, возник у нас только в результате известного рода количественных операций. Поэтому количество, взятое как таковое, всегда однопланово, и математическое обозначение этого количества всегда однозначно, как бы различно мы ни понимали те области, которые исчисляются или строятся при помощи количественного принципа.
2.
Однако в таком случае позволительно спросить: если такую двухплановую языковую структуру обозначить одноплановой математической формулой, не значит ли это свести языковую двухплановость на смысловую одноплановость и не значит ли это обозначать уже не язык, а что-то совсем другое? Эту невозможность выражения двухплановой структуры при помощи одноплановой не нужно доводить до абсурда, утверждая, что одноплановая структура обозначения вовсе ничего не обозначает. Как мы уже говорили выше, количественное обозначение неколичественного предмета дает очень много, поскольку все неколичественные предметы, т.е. все качества, уж для одного того, чтобы отличаться друг от друга, должны быть прежде всего чем-то одним, чем-то другим, чем-то третьим и т.д. Не считая
Итак, математическое обозначение языкового факта не то чтобы решительно ничего в нем не обозначало, но обозначает в нем такую степень его общности, в которой уже теряется конкретность и специфика обозначаемого факта; а это значит, что математическое обозначение в данном случае ничего существенного не обозначает.
Раздел II.
О МЕТОДАХ ИЗЛОЖЕНИЯ МАТЕМАТИЧЕСКОЙ ЛИНГВИСТИКИ ДЛЯ ЛИНГВИСТОВ