Сурьма. В чистом виде применяется при изготовлении различных сплавов. Окислы сурьмы используются для изготовления огнестойких текстильных материалов, огнеупорных красок, эмали, керамики, а различные ее соли (сульфиты, хлориды) — для окрашивания металлических изделий, вулканизации каучука, производства спичек, в пиротехнике. При обработке кислотами металлов, содержащих сурьму, выделяется ядовитый газ — стибин (SbH3). Сурьма и ее соединения поступают в организм главным образом через органы дыхания, они могут длительно задерживаться в печени, коже, волосах. Острое отравление проявляется сильным раздражением слизистых оболочек глаз и верхних дыхательных путей, может наблюдаться поражение желудочно-кишечного тракта, центральной нервной системы, печени, почек. Соединения трехвалентной сурьмы, в первую очередь стибин, вызывают поражение крови (анемия), желтуху.
Надо отметить, что одним из источников опасного воздействия названных и других ядовитых металлов на организм человека является все возрастающее загрязнение водоемов промышленными сточными водами. В одном из специальных отчетов Всемирной организации здравоохранения указывается на постоянно увеличивающееся содержание в реках и озерах таких особо ядовитых химических элементов, как мышьяк, кадмий, хром, свинец, ртуть, селен, ванадий. Так, например, одна из наиболее мощных рек Западной Европы — Рейн, протекающая по территории шести государств, давно уже загрязнена, вода ее мало пригодна для питья и хозяйственных целей, а большинство городов, расположенных на берегах этой реки, снабжается подрусловыми водами.[112] Это же можно сказать о Великих озерах и реке Миссисипи в США и о многих других водоемах. Но, пожалуй, в наибольшей степени от загрязнения водоемов сточными водами страдают жители Японии, где экономическая плотность, т. е. отношение выпуска промышленной продукции к площади удобной земли, в 10–12 раз превосходит аналогичный показатель других высокоразвитых стран. В этой стране, в частности, были отмечены массовые ртутные отравления из-за употребления в пищу зараженной рыбы (залив Минамата), а также тяжелые поражения нескольких сотен людей кадмием, который проник в почву и воду (бассейн р. Джинцу) из расположенных поблизости плавилен и шахт.[113] Здесь уместно вспомнить о громадных количествах токсичных веществ, которые проникают в Мировой океан из атмосферы. Подсчеты показывают, что на его поверхность выпадает, в частности, ежегодно до 200 тыс. тонн свинца и 5 тыс. тонн ртути. Это, естественно, приводит к неблагоприятному воздействию на животные и растительные морские организмы. Так, например, в прибрежных водах Скандинавских стран отмечено значительное увеличение содержания ртути (до 1 мг на 1 кг биомассы), что сделало непригодными к употреблению многие виды рыб.[114] Аналогичная ситуация складывается в заливах и морях, омывающих Японские острова, США и другие промышленно развитые страны.
Механизмы действия тиоловых ядов
Каков же общий механизм взаимодействия ядов с сульфгидрильными соединениями? Прежде всего надо отметить, что в результате реакции ионов металлов с SH-группами образуются слабо диссоциирующие и, как правило, нерастворимые соединения — меркаптиды. При этом одновалентные металлы реагируют по такой общей схеме:
R-SH+Ме+->R-S-Ме+Н+
Если металлический ион двухвалентный, то он блокирует одномоментно две SH-группы:
Помимо этого основного способа ингибирования сульфгидрильные группы белков и аминокислот могут легко окисляться. Это чаще всего происходит при их контакте с различными акцепторами электронов (например, с перекисями, хинонами, йодом) и приводит к образованию дисульфидов — веществ типа R-S-S-R. Инактивация сульфгидрильных групп может также вызываться рядом органических галоидных соединений посредством необратимого замещения водорода в радикале SH на углеродный радикал с образованием прочной сероуглеродной (-S-С-) связи. Различные тяжелые металлы обладают разным химическим сродством к сульфгидрильным группам. Сильнее всего оно выражено у ртути, трехвалентного мышьяка, серебра, а также у свинца и трехвалентной сурьмы.[115]