Мгновенная инактивация медиаторов в адренергических синапсах осуществляется большим числом ферментов,[88] из которых главное значение имеют моноаминоксидаза и катехоламин-орто-метилтрансфераза (КОМТ) (рис. 10). Данные ферменты катализируют окислительное дезаминирование катехоламинов. Биохимиками более изучена структура и функция моноаминоксидазы, которая в отличие от холинэстеразы является сложным металло-протеидом, имеющим в составе своей молекулы активную каталитическую часть особой химической структуры, именуемую в биохимии простетической, или коферментной и включающую пиридоксальфосфатную группировку и атомы меди. В свою очередь пиридоксальфосфат состоит из пиридоксина (витамина В6) и фосфорной кислоты. Согласно принятым данным,[89] именно пиридоксин и медь являются важнейшими компонентами активных каталитических центров моноаминоксидазы и ряда других ферментов, получивших общее название пиридоксалевых.
Серотонин
Результаты экспериментальных и клинических исследований позволяют теперь с достаточной определенностью говорить о существовании такого медиатора нервного возбуждения, биохимическая роль которого связана в основном с высшей нервной деятельностью. Речь идет о серотонине (5-окситриптамине), который считается химическим передатчиком нервных импульсов в центральных синапсах главным образом стволовой части головного мозга. Источником образования серотонина в организме является одна из жизненно важных аминокислот — триптофан, который под действием специфического фермента (оксидазы) превращается в 5-окситриптофан, а последний декарбоксилируется (теряет СО2) и превращается в серотонин:
Понятно, что после выполнения медиаторной функции (т. е. после воздействия на соответствующие рецепторы) молекулы серотонина, подобно другим медиаторам, мгновенно инактивируются. Это происходит вследствие дезаминирования и окисления под влиянием фермента моноаминоксидазы. Следовательно, катехоламины и серотонин связывает общность путей биотрансформации. В этой связи небезынтересно сопоставить химическую структуру адреналина и серотонина. Если допустить, что этиламиновая группа адреналина изогнута, то по своей конфигурации его молекула представляет собою разорванный индольный гетероцикл:[90]
Основываясь на такой точке зрения, можно предположить, что биоструктуры, с которыми взаимодействует серотонин, близки по своему строению с адренорецепторами. Подобие химического строения серотонина с веществами, близкими к адреналину, имеет значение для понимания молекулярного механизма действия некоторых психотомиметических ядов.
Гамма-аминомасляная кислота
В последние 25 лет все большее внимание биохимиков, фармакологов, токсикологов привлекает еще один медиатор передачи импульсов в нервной системе — гамма-аминомасляная кислота (ГАМК). Этот медиатор является нормальным продуктом обмена веществ у млекопитающих и образуется из глутаминовой кислоты при действии пиридоксалевого фермента глутаматдекарбоксилазы:
Теперь считается доказанным,[91] что ГАМК тормозит развитие и проведение импульсов в центральной нервной системе. Следовательно, можно полагать, что по своему биохимическому действию ГАМК есть антагонист тех эндогенных и экзогенных веществ, которые вызывают или стимулируют в нервной системе возбудительный процесс. Освобождающаяся при раздражении тормозных нервных структур (проводящих путей, нервов, клеточных скоплений) ГАМК преодолевает синаптическую щель и вступает во взаимодействие с рецепторами постсинаптической мембраны (ГАМК-рецепторами). По И. А. Сытинскому, ГАМК-рецептор — субклеточная структура (фосфолипидно-белковьй комплекс) постсинаптической мембраны с активными участками, облегчающими сорбцию медиатора на его поверхности. Не исключается, что ГАМК-рецепторы, подобно адренорецепторам, имеют двучленное строение и, следовательно, могут активироваться 2 молекулами медиатора. Медкаторное действие ГАМК в центральной нервной системе можно также объяснить сходством ее химического и пространственного строения с ацетилхолином:
Поэтому учитывается возможность конкурентного антагонизма этих медиаторов в их действии на холинергические рецепторные структуры: взаимодействие с ГАМК защищает холинорецептор от стимулирующего влияния ацетилхолина.
Как и другие медиаторы, ГАМК разрушается в постсинаптических структурах с помощью специфического катализатора. Им является фермент ГАМК-трансаминаза. Важно при этом иметь в виду, что при инактивации ГАМК вновь образуется ее предшественник — глутаминовая кислота. С другой стороны, закономерно, что блокада трансаминазы приводит к избытку ГАМК в синапсах.
Яды — блокаторы пиридоксалевых ферментов
Ряд ядов избирательно влияет на медиаторную функцию катехоламинов, серотонина и ГАМК. Один из них — сероуглерод (CS2) — высокотоксичное производное дитиокарбаминовой кислоты (