Существуют различные объяснения этого интереснейшего факта. Если повреждение ДНК в большой мере вызвано действием образующихся внутри клетки радиотоксинов, то выдерживание клеток в водопроводной воде облегчает удаление ядовитых веществ. После облучения проницаемость клеточных оболочек увеличивается. И не исключено, что сдвиг проницаемости способствует восстановлению, облегчая и увеличивая отток из клетки радиотоксинов.
Но есть и другие предположения. Наиболее распространенная точка зрения состоит в том, что ядерные излучения повреждают молекулы ДНК в результате прямого попадания ионизирующей частицы или косвенно, через посредство водных радикалов или радиотоксинов. Но эти повреждения еще не носят необратимого характера, это, так сказать, потенциальные повреждения. Если внутриклеточная восстановительная система не успевает устранить повреждения в ДНК до начала деления, они в ходе митоза реализуются, становятся необратимыми.
Прошло еще несколько лет, и ученые получили первые данные о том, что же собой представляет восстановительная система клетки, как она работает. Этому помогли открытия в смежной области - защиты от ультрафиолетовых лучей.
Началось с того, что в 1949 г. двое ученых, даже не подозревавших о существовании друг друга: И. Ф. Ковалев в СССР, в Одесском институте глазных болезней им. В. П. Филатова, и А. Кельнер в США, в институте Карнеги, одновременно открыли новое явление, которое затем получило в науке название фотореактивации. Микроорганизмы, облученные большой дозой ультрафиолетовых лучей (И. Ф. Ковалев работал с инфузориями, а А. Кельнер - с кишечной палочкой и грибками актиномицетами), в темноте быстро погибали; на рассеянном солнечном свету или при специальном освещении (лампой дневного света, накаливания или ртутной), выживало уже 20 - 50% облученных микроорганизмов, а иногда даже до 70-80%. Очевидно, видимый свет способствует "выздоровлению" облученных клеток, ускоряет восстановление нанесенных им повреждений (рис. 4).
Вскоре удалось установить, что повреждающее действие ультрафиолетовых лучей прежде всего сказывается на нуклеиновых кислотах клетки. Ультрафиолетовые лучи с длиной волны 2500 - 2700 А, легко поглощаемые нуклеиновыми кислотами, обладают наибольшим бактерицидным действием.
Механизм поражающего действия ультрафиолетовых лучей и фотореактивации был более глубоко изучен и понят лишь после того, как удалось раскрыть структуру молекул ДНК и их роль в процессах жизнедеятельности клеток. Оказалось, что бактерицидное действие ультрафиолетовых лучей главным образом объясняется образованием в ДНК одного специфического дефекта. Энергия ультрафиолетовых лучей, поглощенных азотистыми основаниями ДНК, особенно тимином, расходуется на разрыв двойной связи в тиминовом кольце. Если одновременно разрываются связи в двух близко расположенных кольцах тимина, то между ними образуется двойная связь. Образование таких соединений- димеров тимина - облегчает спиральная структура молекулы ДНК.
Димеры тимина препятствуют удвоению молекулы ДНК Примерно так же, как два слившихся зубца в застежке-молнии мешают ее раскрытию. Клетки, в которых образовалось несколько таких дефектов, теряют способность делиться и гибнут. Образование димеров тимина - главная причина бактерицидного действия ультрафиолетовых лучей. Поэтому бактерии, у которых ДНК богата тимином, особенно чувствительны к ультрафиолетовой инактивации.
Каким же образом видимый свет, действующий после ультрафиолета (эффект воспроизводится в интервале трех часов) может устранять возникшие дефекты? Чисто физические механизмы оказались непригодными для объяснения. А само явление фотореактивации вызвало очень большой интерес у ученых, когда выяснилось, что оно наблюдается не только у бактерий и грибков, но и у простейших (инфузорий, кольпидий, амеб), иглокожих (морских ежей), водорослей, низших и высших растений, земноводных и млекопитающих.