Заметим, что до сих пор все наши рассуждения касались только быстродействия «идеального» компьютера. А как быть с памятью? Существует ли предел запоминающей способности вычислительных устройств?
В рассказе А. Азимова и с этим не предвидится проблем. «Мультивак» передал все имеющиеся сведения «Микроваку», а тот, в свою очередь, «вселенской разумной машине» в виде шара. И в массе накапливаемых сведений не был забыт и главный вопрос, заданный некогда веселыми техниками: «А что будет, когда ничего не будет? »
«Память компьютера ограничена его энтро
Чему равна энтропия «идеального» или «предельного» компьютера Ллойда?
Во–первых, она зависит от объема компьютера: чем он больше, тем большее число возможных положений в пространстве могут занимать его частицы.
Во–вторых, необходимо знать распределение частиц по энергиям. Поскольку речь идет о светящемся шаре, можно воспользоваться готовым расчетом, выполненным еще лет сто назад Максом Планком при решении задачи о так называемом абсолютно черном теле. Например, 1 дм3 или литр квантов света может хранить около 1031 битов информации – это в 1020 раз больше, чем можно записать на современном 10–гигабайтном жестком диске!
Откуда столь огромная разница?
«Все дело в том, – говорит Ллойд, – что способ, которым в современных компьютерах записывается и хранится информация, чрезвычайно неэкономичен и избыточен. За хранение одного бита отвечает целый магнитный домен – а это миллионы атомов».
От «черного ящика» к «черной дыре»
Итак, пытаясь выяснить пределы быстродействия и запоминающей способности вычислительного устройства, мы сначала избавились от лишней массы (1 кг), переведя ее в энергию квантов света, а затем постарались запихнуть все это в объем, равный 1 л. В этих условиях температура огненного шара должна достигать миллиарда градусов (!), а излучать он будет уже гамма–кванты.
То есть «предельный» компьютер получается довольно–таки странным... Есть ли ему аналоги в нашем реальном мире?
Теоретически кипящий «супчик» из гамма–квантов можно запереть внутри так называемого «черного ящика» или абсолютно черного тела. Тогда работа «предельного» компьютера могла бы выглядеть следующим образом. Информация хранилась бы в состояниях и траекториях гамма–фотонов и обрабатывалась за счет их столкновений друг с другом, а также с небольшим количеством образующихся при взаимодействиях электронов и позитронов.
Но как его считывать?
«Достаточно просто открыть «окошко» в стенке нашего идеального «ящика» и выпустить фотоны, – полагает Ллойд. – Вылетев наружу со скоростью света, они тут же попадут в детектор гамма–излучения, где и будет считано их состояние».
Для ввода информации потребуется управляемый генератор гамма–излучения. Конечно, все эти устройства ввода–вывода неизбежно привнесут с собой «лишнюю» массу, от которой мы так хотели избавиться. Но Ллойд считает, что в будущем, возможно, удастся сделать такие приборы очень маленькими. Вспомним хотя бы: поначалу ламповые ЭВМ занимали целые залы, весили десятки тонн и требовали для своего питания энергии Ниагары; нынешние же микрочипы порою трудно далее разглядеть невооруженным глазом.
Однако как бы мы ни совершенствовали процесс ввода–вывода, описанная модель «предельного» компьютера имеет один принципиальный недостаток. Допустим, диаметр нашего компьютера–шара равен 10 см. Поскольку фотоны движутся со скоростью света, то все 1031 битов информации, хранящейся в такой ЭВМ, не могут быть «скачаны» из нее быстрее, чем за время, требующееся свету для прохождения расстояния в 10 см – то есть за 3·10–10 с.
Отсюда следует, что максимальная скорость обмена информацией компьютера с внешним миром равна 1041 бит в секунду. А предельная скорость обработки информации, как мы уже выяснили раньше, составляет 1051 бит в секунду, что в 10 млрд раз быстрее.
Таким образом, необходимость связи компьютера с внешним миром, а также отдельных его частей друг с другом будет приводить к существенным потерям в скорости вычислений. «Отчасти решить эту проблему можно, заставив части компьютера работать независимо друг от друга, то есть параллельно», – отмечает Ллойд.
А есть ли способ повысить скорость ввода–вывода информации? «Да, – говорит Ллойд, – надо уменьшать размеры компьютера. Тогда обмен информацией будет происходить быстрее...»
Но что случится, если мы начнем сжимать «сгусток» гамма–квантов, температура которого равна миллиарду градусов? По мере сжатия температура станет еще выше, в результате чего в объеме компьютера начнут рождаться новые, еще более экзотические частицы. И в конце концов, сжатый до предела сгусток энергии, как показывает теория, превратится... в «черную дыру».
Информация из «сплющенных спагетти»?
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей