Читаем Я — математик. Дальнейшая жизнь вундеркинда полностью

Позднее, во время своих неоднократных поездок в Англию, я довольно хорошо познакомился с Тейлором. Это любопытный образец типично английского ученого-профессионала с глубокими знаниями, который ведет себя в науке как любитель. Тейлор — известный яхтсмен, у него наружность человека, проводящего большую часть жизни на свежем воздухе, самым замечательным своим достижением он считает изобретение нового типа якоря для яхт.

Познакомившись со статьей Тейлора, я более серьезно задумался о возможности физической теории, оперирующей понятием осреднения по множеству кривых. Проблема турбулентности была слишком сложной, чтобы немедленно приступить к атаке, но имелась другая родственная проблема, которая оказалась вполне подходящей для анализа, относящегося именно к той области, которую я для себя выбрал. Это была проблема броуновского движения, явившаяся предметом моей первой важной математической работы.

Чтобы понять, что такое броуновское движение, представим себе сперва игру в пушбол[22] на поле, кишащем игроками. Некоторые из них толкают мяч в одну сторону, некоторые в другую, и в результате большинство толчков гасят друг друга. Однако равновесие шара под действием противоположно направленных ударов будет все же лишь приближенным, так как не все толчки точно компенсируют друг друга. Поэтому шар будет все-таки медленно передвигаться по полю, причем движение его будет сильно напоминать движение пьяницы, о котором мы говорили выше. Иначе говоря, оно будет представлять собой пример беспорядочного движения, при котором будущие перемещения очень мало зависят от того, как двигался шар раньше.

Рассмотрим теперь молекулы жидкости или газа. Эти молекулы не находятся в покое, но совершают случайные, беспорядочные движения, подобные движению людей в толпе. Движение это будет тем более интенсивным, чем выше температура. Предположим, далее, что в жидкость помещен крохотный шарик, который отдельные молекулы толкают точно так же, как толпа игроков толкает мяч при игре в пушбол. Если наш шарик будет совсем уж крошечным, то мы его просто не сможем увидеть, а если он будет слишком большим, то столкновения молекул с ним будут в среднем весьма точно уравновешивать друг друга, так что они не вызовут никакого движения. Существует, однако, промежуточная область размеров, при которых наш шарик является достаточно большим, чтобы его можно было увидеть в микроскоп, и достаточно малым, чтобы толчки молекул вызвали его непрекращающееся беспорядочное движение. Это движение, отражающее непрекращающееся беспорядочное перемещение молекул, называется броуновским движением. Впервые его наблюдали в микроскоп ученые XVIII века, причем оказалось, что такое движение присуще всем без исключения достаточно малым частицам, наблюдаемым с помощью этого прибора.

Таким образом, броуновское движение дает нам ситуацию, в которой частицы описывают кривые, принадлежащие к некоторому статистическому множеству кривых. Тем самым оно представляло собой идеальный объект для применения моих идей о лебеговском интегрировании в пространстве кривых, обладающий также тем преимуществом, что объект этот был физически реальным и тесно связанным с идеями Гиббса. И действительно, применив здесь свои соображения, относящиеся к общей теории интегрирования, я добился значительного успеха.

Само по себе броуновское движение вовсе не было совсем неисследованной областью физики. Но в фундаментальных работах Эйнштейна и Смолуховского, посвященных этой проблеме, изучалось или поведение некоторой частицы в какой-то фиксированный момент времени, или же зависящие от времени статистические характеристики большой совокупности частиц, математические же свойства траекторий отдельных частиц никак не затрагивались.

В этом последнем направлении почти ничего не было известно, если не считать глубокого замечания французского физика Перрена, отметившего в своей книге «Атомы» (Les Atomes)[23], что крайне нерегулярные траектории частиц, совершающих броуновское движение, заставляют вспомнить непрерывные, нигде не дифференцируемые кривые математиков. В этом замечании говорится о непрерывности, поскольку частицы не совершают никаких мгновенных скачков, и о недифференцируемости, поскольку кажется, что ни в какой момент времени эти частицы не обладают точно определенным направлением движения.

В случае физического броуновского движения частицы, разумеется, не во все моменты времени сталкиваются с молекулами — за каждым столкновением следует какой-то промежуток времени, в течение которого никаких столкновений не происходит. Эти промежутки, однако, слишком малы, чтобы их можно было наблюдать каким-нибудь обычным способом. Естественно поэтому идеализировать броуновское движение, предположив молекулы бесконечно малыми, а столкновения — происходящими непрерывно. Именно такое идеализированное броуновское движение я и изучал, обнаружив при этом, что его свойства являются прекрасным суррогатом загадочных свойств истинного броуновского движения.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии