Читаем ...И мир загадочный за занавесом цифр. Цифровая связь полностью

Продолжить гонку он не смог. Бразилец Сенна к середине гонки "вырвался" из группы и начал преследовать француза. В это время оказалось, что колеса на машине Проста уже были изрядно изношены - им требовалась срочная замена. Француз вынужден был остановиться и заменить покрышки своего "Макларена". Воспользовавшись этой ситуацией, бразилец вышел вперед и, как ни пытался настигнуть его Прост, до конца гонки не упустил лидерство. Победитель показал среднюю скорость 350 км/ч, занявший второе место Прост - 340 км/ч, "неудачник" Бергер - на этапе борьбы - 300 км/ч.

Теперь, когда гонка закончилась, проследим, как изменялись скорости автомобилей участников гонки при прохождении ими трассы. Вот перед нами график изменения скорости автомобиля победителя гонки Сенны. Реальная скорость заметно отличается от средней: на старте она не может мгновенно измениться от нулевой до средней - на это нужно определенное время, при прохождении виражей она заметно колеблется вокруг средней и, наконец, после финиша автомобиль останавливается не сразу - скорость падает до нуля постепенно. Но посмотрите, как удивительно похож этот график на изображение искаженного линией связи импульса. Чем объяснить такое поразительное сходство? Вероятно, тем, что как скорость движения автомобиля по трассе, так и скорость нарастания тока в линии связи не могут изменяться мгновенно, скачком. Вы уже рассматриваете два других графика, вычерченные для автомобилей Проста и Бергера? Ну что же, чуть позже мы тоже обратимся к ним.

А пока вернемся к искажениям формы импульсов и подумаем над тем, к каким последствиям они приведут. На первый взгляд может показаться, что от искажений "пострадают" только те биты, которые несут информацию "Да" или 1: ведь только им соответствуют импульсы тока в цифровом потоке. Однако это не так. Вы видели, что импульсы, искажаясь, "расплываются" во времени, а в некоторые промежутки они принимают даже отрицательные значения. Причем протяженность импульсов во времени полностью зависит только от параметров линии связи: R, L, С и G. Бывают такие линии, в которых каждый импульс "тянется" в десятки раз дольше времени, отведенного на его существование. Происходит весьма неприятное явление: передаваемый импульс накладывается своим длинным "хвостом" на целый десяток соседних импульсов. Но и соседние импульсы тока "не остаются в долгу": они "распускают" свои "хвосты".

Нетрудно сообразить, что в те промежутки времени, когда импульсы в цифровом потоке отсутствуют, теперь за счет многочисленных соседних "хвостов" могут вдруг запросто появиться "незваные гости" - импульсы, которые не передавали. И наоборот, отрицательные "хвосты" могут в сумме достичь такой величины, что они "съедят" (или, если хотите, скомпенсируют) рабочий импульс. Описанные события непредсказуемы и могут наступать неоднократно, потому что чередование импульсов в цифровом потоке происходит случайным образом. Предвидеть заранее, во что сложатся на том или ином временном интервале "хвосты" всех соседних импульсов, просто невозможно. Такой вид искажений, когда к моменту приема последующего символа не успевает закончиться действие нескольких предыдущих символов, специалисты назвали межсимвольной интерференцией (что и означает как раз взаимодействие символов между собой). Межсимвольная интерференция может привести, как мы только что убедились, к неправильному приему информации: вместо переданной 1 может быть принят 0, а вместо 0 принята 1.

Как вы думаете, в каком случае межсимвольная интерференция будет меньше: при высокой скорости цифрового потока или при низкой? Правильный ответ - во втором случае. Действительно, на степень "расплывания" импульсов во времени влияют только параметры линии связи, поэтому при низкой скорости передачи, когда импульсы появляются реже и, следовательно, отстоят друг от друга дальше, их "хвосты" едва дотягиваются до соседних импульсов. При высокой же скорости передачи импульсы следуют гораздо чаще и, "расплываясь", налезают друг на друга. Для каждой линии связи можно подобрать скорость цифрового потока, при которой межсимвольная интерференция будет настолько мала, что с ней можно практически не считаться. Правда, возникает другой вопрос: устраивает ли нас эта скорость? Забегая вперед, скажем, что борьба за повышение скорости передачи информации и в то же время за повышение ее достоверности (а эти требования, как мы видели, являются противоречивыми) всегда была и остается до настоящего времени, пожалуй, самой главной задачей связистов. Какими средствами она решается? Об этом еще будет время поговорить.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги