The bottom line, then, is that the unanticipated self-referential twist that Gödel found lurking inside Principia Mathematica was a natural and inevitable outcome of the deep representational power of whole numbers. Just as it is no miracle that a video system can create a self-referential loop, but rather a kind of obvious triviality due to the power of TV cameras (or, to put it more precisely, the immensely rich representational power of very large arrays of pixels), so too it is no miracle that Principia Mathematica (or any other comparable system) contains self-focused sentences like Gödel’s formula, for the system of integers, exactly like a TV camera (only more so!), can “point” at any system whatsoever and can reproduce that system’s patterns perfectly on the metaphorical “screen” constituted by its set of theorems. And just as in video feedback, the swirls that result from PM pointing at itself have all sorts of unexpected, emergent properties that require a brand-new vocabulary to describe them.
CHAPTER 12
On Downward Causality
Bertrand Russell’s Worst Nightmare
TO MY mind, the most unexpected emergent phenomenon to come out of Kurt Gödel’s 1931 work is a bizarre new type of mathematical causality (if I can use that unusual term). I have never seen his discovery cast in this light by other commentators, so what follows is a personal interpretation. To explain my viewpoint, I have to go back to Gödel’s celebrated formula — let’s call it “KG” in his honor — and analyze what its existence implies for PM.
As we saw at the end of Chapter 10, KG’s meaning (or more precisely, its secondary meaning — its higher-level, non-numerical, non-Russellian meaning, as revealed by Gödel’s ingenious mapping), when boiled down to its essence, is the whiplash-like statement “KG is unprovable inside PM.” And so a natural question — the natural question — is, “Well then, is KG indeed unprovable inside PM?”
To answer this question, we have to rely on one article of faith, which is that anything provable inside PM is a true statement (or, turning this around, that nothing false is provable in PM). This happy state of affairs is what we called, in Chapter 10, “consistency”. Were PM not consistent, then it would prove falsities galore about whole numbers, because the instant that you’ve proven any particular falsity (such as “0=1”), then an infinite number of others (“1=2”, “0=2”, “1+1=1”, “1+1=3”, “2+2=5”, and so forth) follow from it by the rules of PM. Actually, it’s worse than that: if any false statement, no matter how obscure or recondite it was, were provable in PM, then every conceivable arithmetical statement, whether true or false, would become provable, and the whole grand edifice would come tumbling down in a pitiful shambles. In short, the provability of even one falsity would mean that PM had nothing to do with arithmetical truth at all.
What, then, would Bertrand Russell’s worst nightmare be? It would be that someday, someone would come up with a PM proof of a formula expressing an untrue arithmetical statement (“0 = s0” is a good example), because the moment that that happened, PM would be fit for the dumpster. Luckily for Russell, however, every logician on earth would give you better odds for a snowball’s surviving a century in hell. In other words, Bertrand Russell’s worst nightmare is truly just a nightmare, and it will never take place outside of dreamland.
Why would logicians and mathematicians — not just Russell but all of them (including Gödel) — give such good odds for this? Well, the axioms of PM are certainly true, and its rules of inference are as simple and as rock-solidly sane as anything one could imagine. How can you get falsities out of that? To think that PM might have false theorems is, quite literally, as hard as thinking that two plus two is five. And so, along with all mathematicians and logicans, let’s give Russell and Whitehead the benefit of the doubt and presume that their grand palace of logic is consistent. From here on out, then, we’ll generously assume that PM never proves any false statements — all of its theorems are sure to be true statements. Now then, armed with our friendly assumption, let’s ask ourselves, “What would follow if KG were provable inside PM?”
A Strange Land where “Because” Coincides with “Although”