For multi-symbol formulas (by the way, in this book the terms “string of symbols” — “string” for short — and “formula” are synonymous), the idea was to replace the symbols, one by one, moving left to right, by their code numbers, and then to combine all of those individual code numbers (by using them as exponents to which successive prime numbers are raised) into one unique big integer. Thus, once
For instance, suppose that the (arbitrary) code number for the symbol “0” is 2, and the code number for the symbol “=” is 6. Then for the three symbols in the very simple formula “0=0”, the code numbers are 2, 6, 2, and these three numbers are used as
22 · 36 · 52 = 72900
So we see that 72900 is the single number that corresponds to the formula “0=0”. Of course this is a rather large integer for such a short formula, and you can easily imagine that the integer corresponding to a fifty-symbol formula is astronomical, since it involves putting the first fifty prime numbers to various powers and then multiplying all those big numbers together, to make a true colossus. But no matter — numbers are just numbers, no matter how big they are. (Luckily for Gödel, there are infinitely many primes, since if there had been merely, say, one billion of them, then his method would only have let him encode formulas made of a billion symbols or fewer. Now that would be a crying shame!)
The decoding process works by finding the prime factorization of 72900 (which is unique), and reading off the exponents that the ascending primes are raised to, one by one — 2, 6, 2 in this case.
To summarize, then, in this non-obvious but simple manner, Gödel had found a way to replace any given formula of
In short, Gödel showed how any visual symbol-pattern whatsoever in the idiosyncratic notation of
Very Big Integers Moving in Lock-step with Formulas
The next key step was to make Fibonacci-like recursive definitions of special sets of integers — integers that would organically grow out of previously generated ones by addition or multiplication or more complex computations. One example would be the
I’ve said the foregoing rather casually, but in fact this step was perhaps the deepest of Gödel’s key insights — namely, that once strings of symbols had been “arithmetized” (given numerical counterparts), then any kind of rule-based typographical shunting-around of strings on paper could be perfectly paralleled by some kind of