Гармоники представляют собой чистые, не темперированные и полностью согласованные между собой варианты сильно урезанного и расстроенного набора нот, который со времен "Хорошо темперированного клавира" Баха используется в 12-нотной равномерной темперации. В вышеупомянутых 24 гармониках мы встречаем как ноты, значительно отличающиеся от их темперированной версии (5, 7), так и/или неизвестные в нашей обычной гамме (7, 11, 13, 14).
Главная гамма происходит от гармонических рядов. "До" (1), "ре" (9), "ми" (5), "соль" (3), "ля" (27) и "си" (15) происходят от восходящего гармонического ряда, а "фа" (4/3) — от нисходящего.
По мере восхождения гармоник (их транспонирования/соотношения к 1) после гармонического промежутка в первой октаве в следующих октавах появляется все больше и больше гармоник. В каждой последующей октаве между двумя соседними гармониками предыдущей октавы всегда появляется новая гармоника. Например, 3 между 1 и 2; 5 между 3 и 7; 7 между 3 и 4. Появляются все более и более тонкие градации основных нот, и ступени становятся все ближе и ближе. Музыкальное различие между одной гармоникой и последующей все больше и больше относится к области едва различимой микротональности.
Можно считать, что идея интервалов, или восприятия специфической гармонии между нотами, возникла благодаря соотношениям гармонических рядов. Любую ноту можно рассматривать, как гармонику, а любой музыкальный интервал — как соотношение между гармониками. Это основное соотношение может быть транспонировано и выражено, как целочисленная пропорция в изначальной октаве от 1 до 2.
Все музыкальные интервалы — более высокая нота в сочетании с более низкой — образуются тремя следующими способами:
1. Как отношение между восходящей гармоникой и ближайшей 1 как более низкой нотой Например, 2/1 (октава), 3/2 (квинта), 5/4 (большая терция). Математически это можно выразить просто как h/1, где h — любое положительное целое число, а знаменатель — 1 или любая из октав единицы -2, 4, 8 и т. д.
2. Как отношение между более высокой нотой, соответствующей 1 или одной из ее октав, и нисходящей гармоникой. Математически это можно выразить как 1/h, где 1 — более высокая нота, а более низкая нота соответствует гармонике, нисходящей от этой единицы. Например, соотношение 4/3 определяет кварту, "до" — "фа". 1/3 — третья субгармоника нисходящего ряда. Поскольку 3 — нечетное число, 1 транспонируется на две октавы, в 4.
3. Третий способ образования музыкальных интервалов, "в котором нет 1" — гармоника между двумя нотами, ни одна из которых не является ни 1, ни октавой 1. Это можно выразить, как h1/h2. Например, музыкальные интервалы 13/9, 7/5 и 9/7.
Без транспонирования первая группа интервалов h/1, где h — любое положительное целое число, по мере увеличения номера гармоники стремится к бесконечности. В бесконечности одна гармоника столь же высока, как и последующая… тихое единство в Абсолюте. Во втором случае численное выражение интервалов, соответствующих 1/h, стремится к нулю — и снова тишина… В третьем варианте, где ни одна из гармоник не являются 1, тенденции развиваются в обоих направлениях. При транспонировании можно изучать все три варианта "в одном", в изначальной октаве между 1 и 2.
Возможность настройки гармоник на 1, на любую другую ноту, или одной гармоники к другой означает, что диапазон возможных интервалов и гармоний бесконечен, как и сами гармоники, заключая в себе любое целочисленное соотношение. Таким образом, гармоники — источник множества интервалов, о которых мы не знаем, которые мы не используем или забыли, но которые представляют значительный музыкальный интерес.
Гармонические ряды являются, конечно, источником весьма ограниченного количества нот и интервалов, обычно используемых в наших гаммах; но они были расстроены 12-нотной равномерной темперацией, в которой фактически не строит ни один интервал внутри октавы. Все подобные интервалы основаны исключительно на иррациональном числе — корне из 2.
Мелодические гармоники, по меньшей мере "соль" 24, могут быть спеты из нормального регистра; в субгармоническом пении можно дойти до 40-х гармоник, на шесть октав выше основной. Есть другие слышимые сопровождающие гармоники, фактически до пределов возможностей слуха. В субгармоническом пении можно дойти почти что до 0. Таким образом, можно было бы сказать, что голос может расширяться от 0 вверх, настолько высоко, как позволяет слух. В любой момент в голосе можно слышать семь звуков.
Гармоники, слишком высокие для того, чтобы их петь (в их оригинальной октаве), но представляющие разложимые на множители числа — такие, как 25, 49, 63 и 77 — можно определить, сперва спев основную ноту, соответствующую множителю; второй сомножитель, спетый как гармоника первого множителя, и даст искомую гармонику.