Интуитивно ясно, чем больше измерений, тем разнообразней будут свойства решений теории. В чем это проявляется в решениях для черных дыр? Разнообразие решений в многомерной ОТО обязано двум новым особенностям: нетривиальной динамике вращений и возможности формирования протяженных горизонтов событий. Обсудим их. В обычной ОТО с 4-мерным пространством-временем
Комбинация этих двух новых возможностей в разных вариациях привела к тому, что в рамках многомерной ОТО построена масса решений типа черных дыр, имеющих свою сложную иерархию. На рис. 12.4 приведены некоторые из этих решений. Если в 4-мерной ОТО горизонт событий известных черных дыр, как правило, имеет сферическую форму, то в многомерии ситуация существенно изменяется. Горизонты вырождаются в струны (как мы уже упомянули), могут быть в форме тора, и т. д. Следует иметь в виду, что изображения горизонтов на рис. 12.4 должны восприниматься в определенной степени символически, поскольку в реальности они представляют собой 3-мерные поверхности в 4-мерном пространстве.
Рис. 12.4. Стационарные 5-мерные черные дыры
Эти образования называют уже не «черными дырами», а «черными объектами». Они могут быть многосвязными, например, черная дыра, окруженная «черным тором» называется «черным сатурном». Часть из этих объектов определяется нестабильными решениями, для другой части оказывается невозможным корректно рассчитать сохраняющиеся величины, но многие не имеют таких дефектов. Однако несмотря на все разнообразие свойств (приемлемых или вызывающих сомнения) и вычурную форму некоторых объектов, их горизонты событий имеют все то же основное свойство, что и горизонт черной дыры Шварцшильда: история материального тела после его пересечения перестает быть доступной внешнему наблюдателю.
Эта картина выглядит весьма и весьма экзотично и, вроде, не имеет отношения к действительности. Но кто знает – когда-то решения для черных дыр казались далекими от реальности, а сейчас нет сомнений, что эти объекты повсеместно населяют Вселенную. Возможно, что мы живем на бране, а внешний 5-мерный мир включает что-нибудь типа «черного сатурна», и его влияние на брану будет обнаружено.
Биметрические теории и теории с массивным гравитоном
Вспомним, чтобы описать слабые гравитационные волны, мы разбивали динамическую метрику ОТО на метрику плоского пространства-времени и возмущения метрики. Оказалось, что возмущения в виде волн могут распространяться в пространстве Минковского, которое играет роль фонового. Фон может быть и искривленым, однако должен оставаться фиксированным, т. е. его метрика должна быть решением ОТО. В этой картине метрика фонового пространства-времени и метрические возмущения являются независимыми. Такое представление есть один из вариантов биметрической теории гравитации, где одна метрика известна и представляет фоновое пространство-время, а вторая, динамическая, играет роль распространяющегося в нем гравитационного поля. В данном случае такое описание индуцировано самой ОТО.
Однако биметрические теории строятся и без ссылок на существование ОТО, а как независимые теории. Их характерные черты в том, что фоновая и динамическая метрики объединяются в эффективную метрику, которая в свою очередь определяет эффективное пространство-время, где распространяются и взаимодействуют все физические поля. Как правило, в пределе слабого поля и малых скоростей предсказания ОТО и биметрических теорий совпадают, и они удовлетворяют всем или большинству тестов, которым соответствует и ОТО. Из-за чего уделяется внимание биметрическим теориям? Их устройство, например, позволяет более просто и непротиворечиво определять сохраняющиеся величины. Также они имеют преимущества при квантовании.