Начертим путь шмеля. Мы знаем, что шмель летел сначала «прямо на юг» в течение 60 мин. Затем он летел 45 мин «на запад», т. е. под прямым углом к прежнему пути. Оттуда «кратчайшей дорогой», т. е. по прямой линии – обратно к гнезду. У нас получился прямоугольный треугольник ABC, в котором известны оба «катета», AB и ВС, и надо определить третью сторону, – «гипотенузу» АС.
Рис. 4. Маршрут шмеля
Геометрия учит, что если какая-нибудь величина содержится в одном катете 3 раза, а в другом – 4 раза, то в третьей стороне – гипотенузе – та же величина должна содержаться ровно 5 раз.
Например, если катеты треугольника равны 3 и 4 м, то гипотенуза равна 5 м; если катеты равны 9 и 12 км, то третья сторона равна 15 км и т. п. В нашем случае один катет равен 3 х 15 мин пути, другой -4 × 15 мин пути; значит, гипотенуза АС равна 5 × 15 мин пути. Итак, мы узнали, что из сада к гнезду шмель летел 75 мин, то есть 11/4 часа.
Теперь легко уже подсчитать, сколько времени шмель отсутствовал. На перелеты он потратил:
1 час + 3/4 часа + 11/4 часа = 3 часа.
На остановки у него ушло времени:
1/2 часа + 11/2 часа = 2 часа.
Итого: 3 часа + 2 часа = 5 часов.
4. Поверхность крышки равна произведению длины ящика и его ширины; поверхность боковой стенки равна высоте × ширину; поверхность передней стенки – высоте × длину. Таким образом,
длина × ширина = 120;
высота × ширина = 80;
высота × длина = 96.
Перемножим первые два равенства. Получим:
длина × высота × ширина × ширина = 120 × 80.
Разделим это новое равенство на 3-е:
Сократив дробь и произведя действия, имеем:
ширина × ширина =100.
И, следовательно, ширина ящика равна 10 см. Зная это, легко определить, что высота ящика равна:
80/10 = 8 см,
а его длина = 96/8 = 12 см.
5. Вы не решите этой простой задачи, если не уясните себе сначала, из чего складывается длина цепи. Всмотритесь в рис. 5.
Рис. 5. Звенья цепи
Вы видите, что длина натянутой цепи складывается из полной ширины первого звена, к которой с присоединением каждого нового звена прибавляется не полная ширина звена, а ширина звена без его двойной толщины.
Теперь перейдем к нашей задаче.
Мы знаем, что одна цепь длиннее другой на 14 см и имеет на 6 звеньев больше. Разделив 14 на 6, получаем 21/3. Это и есть ширина одного звена, уменьшенная на двойную его толщину. Так как толщина кольца известна – полсантиметра, то полная ширина каждого звена равна 21/3 + 1/2 + 1/2 + З1/3 сантиметра.
Теперь легко определить, из скольких звеньев состояла каждая цепь. Из рисунка видно, что если мы отнимем от 36-сантиметро-вой цепи двойную толщину первого звена, т. е. 1 см, а разность разделим на 21/3, то получим число звеньев в этой цепи:
35: 21/3 = 15.
Точно так же узнаем число звеньев в 22-дюймовой цепи:
21: 21/3 = 9.
6. Мельник начал с того, что сложил все 10 чисел. Полученная сумма, 1156 кг – не что иное, как учетверенный вес мешков: ведь в нее вес каждого мешка входит 4 раза. Разделив эту величину на 4, узнаем, что пять мешков вместе весят 289 кг.
Для удобства обозначим мешки в соответствии с их весом номерами. Самый легкий мешок получит номер 1, второй по тяжести – 2 и т. д.; самый тяжелый мешок – номер 5. Нетрудно сообразить, что в ряду чисел: 110 кг, 112 кг, 113 кг, 114 кг, 115 кг, 116 кг, 117 кг, 118 кг, 120 кг, 121 кг – первое число составилось из веса двух самых легких мешков, 1 и 2, второе число – из веса мешков 1 и 3. Последнее число есть не что иное как вес двух самых тяжелых мешков, 4 и 5, а предпоследнее – 3-го и 5-го. Итак,
1 и 2 вместе весят 110 кг
1 и 3 – "– "– 112 – "-
3 и 5 – "– "– 120 – "-
4 и 5 – "– "– 121 – "-
Теперь легко узнать сумму весов мешков 1,
2, 4 и 5: она равна 110 кг + 121 кг = 231 кг. Вычтя это число из общей суммы веса всех мешков (289 кг), получаем вес мешка 3, именно 58 кг.
Далее, из суммы веса мешков 1 и 3, т. е. из 112, вычитаем известный уже нам вес мешка 3; получается вес мешка 1: 112 кг – 58 кг = 54 кг.
Точно так же узнаем вес мешка 2, вычтя 54 кг из 110 кг, т. е. из суммы веса мешков 1 и 2. Получаем: вес мешка 2 равен 110 кг – 54 кг = 56 кг.
Из суммы веса мешков 3 и 5, т. е. из 120, вычитаем вес мешка 3, который равен 58 кг; узнаем, что мешок 5 весит 120 кг – 58 кг = 62 кг.
Остается определить вес мешка 4 из суммы весов мешков 4 и 5, т. е. из 121 кг. Вычтя 62 из 121, узнаем, что мешок 4 весит 59 кг.
Итак, вот вес мешков:
54 кг, 56 кг, 58 кг, 59 кг, 62 кг.
7. Мы знаем, что Володя вдвое старше Жени, а Надя и Женя вместе вдвое старше Володи. Значит, годы Нади и Жени, сложенные вместе,
Далее, мы знаем, что сумма лет Алеши и Володи вдвое больше суммы лет Нади и Жени. Но возраст Володи есть удвоенный возраст Жени, а годы Нади и Жени, сложенные вместе, есть учетверенный возраст Жени. Следовательно,
годы Алеши + удвоенный возраст Жени = 8-кратному возрасту Жени,
т. е.:
Наконец, нам известно, что сумма возрастов Лиды, Нади и Жени равна удвоенной сумме возрастов Володи и Алеши.