А что же будет потом — по истечении этих нескольких десятитысячных долей секунды?
Энергия фотохимической активации перекочевывает вместе с электроном на соседнюю молекулу. Да, на соседнюю, как это ни удивительно. Налицо межмолекулярный перенос заряда — тот самый, механизм которого так интересует инженеров — творцов органических полупроводников.
Чтобы углекислота CO2 превратилась в глюкозу, ей нужен водород. И энергия! Поставщиком того и другого служит трифосфопиридиннуклеотид ТПН. Чтобы стать настоящим межмолекулярным «коммивояжером», он должен сначала перейти в восстановленную форму: ТПН—H. Здесь — H является символом того самого водородного атома, который предназначен для углекислоты. Агент по поставке водорода собирает свой товар по частям. Одну часть — электрон — он получает от хлорофилла. Другую — протон — от воды.
Воды в зеленом листе много. И ее молекулы частично диссоциированы на протон и гидроксил: H2O = H+ + ОН–. Протон воды вместе с возбужденным электроном хлорофилла идет на построение высокоэнергетических валентных связей глюкозы. А оставшийся неприкаянным гидроксил?
Он тоже не пропадает втуне. Если отнять у него электрон, произойдет расщепление: OH– = O + H+ + 2e. Кислород выделится в атмосферу. Водород тоже не останется без дела — на него всегда при фотосинтезе спрос большой.
Электрон же поступает в распоряжение веществ-переносчиков. Новые агенты по поставке обдирают электрон как липку, заставляя его раскошелиться и истратить всю свою избыточную энергию на создание высокоэнергетических связей в молекуле аденозинтрифосфата (АТФ). Молекула образуется из аденозиндифосфата (АДФ), присоединяя к себе остаток фосфорной кислоты. Обратный процесс — разложение АТ на АДФ и фосфатный остаток — протекает с выделением энергии. Высвобожденная энергия идет в фонд помощи углекислоте — на образование из нее глюкозы. А окончательно растратившийся электрон водворяется на место «дырки» в молекуле хлорофилла. Цикл фотосинтеза завершен.
Так из воды и углекислого газа зелеными фабриками вырабатывается глюкоза. В ее межатомных связях законсервирована энергия солнечного зайчика. Переходя в организм животных, глюкоза становится биохимическим топливом. Сгорая по схеме (CH2O) + O2 = СО2 + H2O + 112 ккал, она отдает свою энергию на образование АТФ из АДФ и фосфорной кислоты. Энергия запасается валентными связями. А уж отщепление фосфата поставляет животным и человеку энергию для всех процессов жизнедеятельности.
Молекулы хлорофилла расположены в цехах миниатюрных зеленых фабрик отнюдь не как попало. Они не просто плавают в соках растительной клетки. Положите лист любого вашего комнатного растения на твердую гладкую подставку, не отрывая его от ветки. И легонько прокатайте карандашом. Фотосинтез немедленно прекратится! Достаточно малейшего нарушения клеточной структуры, чтобы живой полупроводник перестал работать.
Архитектура живых фабрик сложна и тонка. Плоские молекулы хлорофилла лежат стопками внутри особой структурной ячейки — граны. Каждая молекула напоминает полупроводниковую пластинку фотоэлектрического элемента, каждая грана — сам элемент, а совокупность гран — батарею элементов.
Ежегодно зеленые «электрические батареи» аккумулируют такое количество солнечной энергии, сколько могли бы дать двести тысяч электростанций, равных по мощности Волжской ГЭС имени В. И. Ленина. Научиться изготовлять такие же высокоэффективные полупроводниковые батареи, подобные тем, что действуют внутри растений, — заветная мечта ученых и инженеров. Известный французский физик Фредерик Жолио-Кюри как-то сказал: «Хотя я верю в будущее атомной энергетики, однако настоящий переворот в энергетике наступит лишь в тот день, когда мы сможем осуществить массовый синтез молекул, подобных хлорофиллу, или даже лучше него». Ученый подсчитал: если б удалось использовать всего одну десятую часть солнечной радиации, падающей на Египет, то этого с лихвой хватило бы для удовлетворения нынешних энергетических потребностей человечества.
Но вернемся к энергетическому циклу в биосфере. Не зря изображают его начало стрелкой, направленной вверх. Вторую стрелку придется нарисовать изогнутой: опускаясь на прежний энергетический уровень, электрон участвует в различных приключениях, где и отдает постепенно свою энергию. Жизнь управляется именно электронами! А электрон, движущийся по замкнутому контуру, — не что иное, как слабый электрический ток. Стало быть, жизнью движут слабые электрические токи, питаемые солнечным светом. И в этих тончайших биологических тонкостях не разобраться без квантовой химии.