Разумеется, стремление получить наиточнейшие количественные результаты вполне закономерно. Это, если угодно, дань традициям квантовой механики. И действительно: когда системы содержат не более 3–4 электронов, расчетные данные хорошо согласуются с экспериментально измеренными. В случае молекул с 5–20 электронами приходится звать на выручку вычислительную технику. Для систем с числом электронов более 20 точные расчеты уже неосуществимы. Но так ли уж они необходимы?
В последние годы на электронно-счетных машинах были с успехом проделаны очень громоздкие вычисления. При расчете молекулы H2 волновая функция содержала более полусотни членов, атома He — 1078 членов. Точность вычислений превысила точность эксперимента. Между тем еще в 1933 году ученые Джемс и Кулидж безо всяких быстродействующих электронных машин, с карандашом в руках, расчислили волновую функцию с 13 членами. Они получили энергию связи 4,7198 электроновольта. Это составило 99,5 процента от опытного значения (4,7451 эв). Точность тоже вполне достаточная. Зато достигнута она более простыми средствами! Этот пример заставит призадуматься даже самого пылкого энтузиаста машинной математики в химии. В одном из лучших современных расчетов молекулы N2 (14 электронов) было получено такое значение энергии связи: 27 больших калорий на моль. В действительности же 225. Вот какое расхождение! Чуть ли не десятикратное. Что попишешь: не всегда удается точный расчет. Уж слишком сложна физическая картина многоэлектронных молекул.
А зачем вязнуть в трясине бесконечных математических сложностей? Имеет ли смысл проверять лишний раз правильность законов квантовой механики на новых и новых примерах?
Конечно, диапазон от 1 до 20 электронов не так уж мал. Здесь уйма увлекательных загадок. И точное их решение весьма соблазнительно. Однако еще больше интересного остается за бортом этого интервала, где о точности не может быть покамест и речи. Но отказываться от точности — это не значит отрекаться от квантовой механики! Порой вполне разумно ограничиться приближенным решением проблемы. Правда, такой подход приводит лишь к качественным и полуколичественным оценкам. Зато он приложим к системам любой сложности — от бензола до белка.
Многие почему-то считают, что математика — это манипуляции с цифрами. Отнюдь не всегда! Математические критерии и логика не утрачивают силы при качественном анализе явлений. Иногда достаточно уловить общий характер закономерности, границы ее применимости, степень вероятности событий, их статистическое распределение.
Конечно, не каждому понятию дашь безупречное математическое истолкование. А блюстители математической строгости, увлекаясь формализмом, волей-неволей игнорируют чисто химические особенности явлений. Ответ на вопрос «почему» обычно не только проще, но подчас и важнее ответа на вопрос «сколько».
«Не такой требуется математик, — писал Михаил Васильевич Ломоносов, — который только в трудных выкладках искусен, но который, в изобретениях и доказательствах привыкнув к математической строгости, в натуре сокровенную правду точным и непоползновенным порядком вывесть умеет. Бесполезны тому очи, кто желает видеть внутренность вещи, лишаясь рук к отверстию оной. Бесполезны тому руки, кто к рассмотрению открытых вещей очей не имеет. Химия руками, математика очами физическими по справедливости назваться может».
Наше путешествие в микромир, начатое в лифте «Атомиума», подходит к концу. Как не похожа стальная брюссельская громада на описанные нами крохотные архитектуры! Там сталь — здесь органические вещества — неметаллы. Там кусок кристалла — здесь молекулы с валентной связью. Там четкая пространственная геометрия — здесь воображаемые расплывчатые очертания.
И в то же время между ними есть нечто общее. Хотя бы характер поведения электронов в металлическом кристалле и сопряженных связях. А главное сходство в другом. И там и здесь — символ победы над твоими тайнами, Природа! Победы, которая позволит человеку чувствовать себя внутри молекулярных построек столь же свободно, как и в комфортабельных помещениях «Атомиума».
Глава 3
Необыкновенная связь
С каждым днем стареют учебники. Всего четыре десятка лет назад сделало свой первый шаг строптивое дитя физики и математики — квантовая химия. А сколько классических представлений, выкристаллизовывавшихся веками, низвергло оно за короткий срок!
Уравнение Шредингера занимает ровно одну строчку. А отразило в себе, как капля воды Солнце, весь грандиозный опыт старой и новой физики.
Впрочем, оно явилось не только итогом научного прошлого. Оно стало мощным интуитивным рывком в будущее. Именно математическая интуиция предвосхитила явление электронного спина — фундаментальнейшую характеристику химической связи. Именно квантово-механические расчеты позволили химикам, как сквозь магический кристалл, заглянуть внутрь валентного штриха, проникнуть в быстрый и легкий мир призрачных электронных архитектур.