Читаем Глаз и Солнце полностью

Главной заслугой Ньютона, однако, является открытие дисперсии.[4] Он показал, что именно дисперсия вызывает нерезкость в изображениях, даваемых объективами астрономических труб, которую ранее приписывали сферической аберрации (Декарт). Он вычислил хроматическую аберрацию линз. Вместе с тем он допустил крупную ошибку, приняв, что частная относительная дисперсия есть универсальная постоянная, одинаковая для всех прозрачных сред. Из этого вытекает невозможность исправить хроматическую аберрацию объективов. Ньютон, считая, что дальнейшее улучшение линзовых объективов невозможно, перешел к отражателям, разработал сплавы для них, а также способ шлифовки параболических поверхностей. Ему принадлежат первые отражательные телескопы хорошего качества, хотя проекты таких телескопов были уже предложены, но не осуществлены его современником Грегори. После Ньютона развитие линзовых объективов на полвека приостановилось, но зато рефлекторы начали быстро распространяться и улучшаться.

В своих общих представлениях о природе света Ньютон склонялся к эмиссионной теории. Так как с помощью этой теории явления дифракции и интерференции плохо объясняются, то мы на ней останавливаться не будем. Современник Ньютона Гюйгенс предложил в 1678 г. свою знаменитую волновую теорию. В том виде, в котором он ее изложил, она была очень несовершенна; однако основная идея теории оказалась настолько плодотворной, что она до сих пор с некоторыми, введенными позже дополнениями управляет явлениями распространения электрической и световой энергии, в частности всей теорией оптических инструментов, по крайней мере в той части, которая связана с распространением света и с образованием изображений, объясняя до малейших подробностей ту сложнейшую картину, которая при этом получается.

Как ни велико значение волновой теории света, она не могла оказать влияния на дальнейшее развитие геометрической оптики, так как последняя с ней не связана; она с большей наглядностью доказывает второстепенное значение явления дифракции в оптических приборах. Теория геометрической оптики, которая после Кеплера и Ньютона стала быстро развиваться и углубляться, наоборот, создала переворот в конструкции оптических приборов, и связь между теорией и практикой стала все теснее и теснее.

Линзы большого диаметра для астрономических труб изготовлялись Дивини, Кампани (1660) в Италии, Борелем и Озу во Франции, Нейлем в Англии, Чирнгаузеном в Германии. Одновременно с этим уточнялось понятие каустик (Гюйгенс, Чирнгаузен, И. и Я. Бернулли, Лопиталь), изучались свойства аберрированных изображений.

Физиологическая оптика после работ Роберта Смита и Джурина (1730) сделала заметные успехи; впервые ставится вопрос о разрешающей силе глаза, хотя в очень несовершенном виде.

В середине XVIII в. Эйлер, взявший под сомнение положение Ньютона о невозможности получить ахроматический объектив, предложил строить сложные объективы, пользуясь водой как промежуточной средой. После работ Клингенстьерна (1750–1755) и Доллонда последнему удалось построить ахроматический объектив; этот вопрос имел настолько большое значение, что, помимо перечисленных авторов, им занимались еще Клеро и д’Аламбер. Любопытно, что, как и Ньютон, Эйлер в решении рассматриваемого вопроса исходил из неверной идеи, а именно: что глаз человека является ахроматическим. Позже было показано, что глаз человека обладает значительной хроматической аберрацией, но зрительный аппарат каким-то образом ее исключает, как, например, он исключает слепое пятно сетчатки.

Принцип ахроматизма стал применяться и в микроскопе (Фусс, Дельбарр по указаниям Эйлера, 1769). Это вызвало заметное улучшение качества этих приборов, которые почти два столетия оставались на низком уровне и рассматривались больше в качестве игрушек, а не научных инструментов.

К этому времени относится возникновение фотометрии (Буге, Ламберт); устанавливаются основные понятия фотометрии, понятия яркости, силы света и освещенности изучаются теоретически и опытным путем основные зависимости, связывающие эти величины между собой.

Начало XIX в. связано с новым направлением в геометрической оптике, а именно с более глубоким изучением структуры пучков лучей. Это вопрос – чисто геометрический, и, естественно, он разрабатывался математиками: Малюсом (1807), Дюпеном (1822), Жергонном (1825), Штурмом (1838), Куммером (1859).

Другое направление – изучение оптических систем вблизи их оптической оси – ведет к законам параксиальной оптики. Благодаря своей простоте и наглядности эти законы позволяют представить оптические системы в виде простейших схем, с помощью которых основная задача геометрической оптики – нахождение изображения – решается элементарно. Кроме того, эти законы являются предельными для широких пучков; они определяют свойства того класса оптических систем, которые можно называть идеальными.

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука
Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы