1.2. Резонансы и обертоны
Со школьных лет, а кто и раньше, мы помним притчу про солдат, что по мосту шли строем в ногу, и рухнул мост… Ну как же так!
В дискуссиях по музыкальным инструментам в интернете мне не единожды советовали учить физику, высказывая уверенность, что в школе я её не учил. На таких «советчиков» быстро нашёлся приём: определение резонанса помните? Хорошо, а почему такое происходит? Что с неким физическим телом на некоторой частоте не так, как на любой другой? Почему при воздействии сравнительно небольших усилий с некой частотой рухнул мост, способный выдерживать в разы большие статичные нагрузки?
Ни один из самонадеянных оппонентов ответить не смог. Да, друзья, пятёрка по физике в школьном аттестате не делает вас экспертами в технических областях знаний, в том числе в музыкальной акустике. Резонанс в школе не изучают, а именно проходят.
Чтобы найти ответ на этот каверзный вопрос, снова вспомним про колебательный контур, который в школе так же проходили. КК имеет собственную частоту, и может использоваться в электронном генераторе колебаний в качестве частотозадающего узла. А ещё, если через него пропустить несколько сигналов различных частот, мы можем обнаружить, что лучше всего, с наименьшими потерями по амплитуде, будет проходить сигнал с той самой частотой, которую КК задаёт в генераторе.
И что это значит? А это значит, что на резонансной частоте КК имеет минимальное электрическое сопротивление. И если правильно сформулировать причинно-следственную связь, получим определение: резонансная частота колебательного конура это такая частота, на которой его электрическое сопротивление минимально.
От электроники перейдём к механике. Многие физические тела имеют заметный резонанс на определённых частотах. И теперь нам несложно догадаться, откуда он берётся. Да, механическое (упругое) сопротивление физического тела неодинаково на разных частотах, и его резонансная частота – это частота, на которой упругое сопротивление минимально.
Вспомним школьную шутку про электрический ток: он похож на лентяя, поскольку стремится идти по пути наименьшего сопротивления. Вот и свободное колебание тоже норовит сформироваться на частоте, встречающей наименьшее сопротивление, хоть электрическое, хоть механическое.
Сопротивление на резонансной частоте обязательно ниже, чем при статичной нагрузке, в некоторых случаях во много раз. А упругое сопротивление чётко связано с пределом прочности. Разумеется, музыкальные инструменты делаются с достаточным запасом прочности, чтобы не рассыпались от собственного звучания, это для лучшего понимания явления. Например, почему же развалился мост из легенды.
***
Если руководствоваться параллелью с колебательным контуром, резонанс у физического тела может быть только один. Выходит, у струны может быть только один тон, у несущей только один резонанс.
К счастью, это не так. У колебательного контура электронный резонанс действительно один, а вот у физических тел график частота-упругое сопротивление зачастую имеет весьма замысловатую форму, в которой помимо глобального минимума присутствуют ещё и локальные. Такие точки на этом графике, из которых что вверх по частоте, что вниз, сопротивление увеличивается, и соответствуют частотам резонансов. При этом, чем выше абсолютное значение сопротивления в точке некоторого локального минимума, тем слабее резонанс на данной частоте.
Здесь снова уместна параллель из электротехники: так же распределяется мощность между несколькими параллельными резисторами с разным сопротивлением.
Вот так в струнах возникают линейки обертонов, а несущая часть обычно имеет несколько резонансов. Взаимодействие гармоник струн и резонансов несущей части почти всецело определяет звучание инструмента.
1.3. Взаимодействие резонансов
Проведём лабораторную работу. Для неё нам потребуются:
Гитарный тюнер и тюнер для настройки ударных инструментов, скачанные и установленные в компьютере, струна, лучше всего нейлоновая (даже не карбоновая), колок, кое-какие дощечки и брусочки.
Сделаем вот такой «стенд»:
Для начала нам надо добиться унисона между струной и резонатором. Когда вы его добьётесь, поймёте это по ужасному звучанию. Запомните его, это «волчок», о нём ещё поговорим. А теперь понемногу будем сдвигать брусочки, понижая или повышая тон резонатора, при этом каждый раз замеряя тюнером тон струны.
И что обнаружим? Тон струны изменяется вслед за изменением тона резонатора! Но чем дальше мы смещаем тон резонатора, тем отклонение тона струны от первоначального становится меньше.
Объясняется это просто: струна и резонатор образуют единую колебательную систему, и их графики частота-упругое сопротивление складываются. При этом минимумы находятся не на одной и той же частоте, суммарный минимум оказывается где-то между исходными. Несколько сложнее понять, почему этот минимум всегда находится ближе к частоте струны, причём разница может быть во много раз. Для этого надо изучить такой параметр, как добротность (обозначается «Q»).