На втором этапе требовалось составить уравнения поля, которым подчиняется струна. С уравнением поля для одной струны, перемещающейся в пространстве-времени, проблем не было. Как и следовало ожидать, наши уравнения поля дали бесконечный ряд струнных резонансов, каждый соответствовал некой субатомной частице. Затем мы обнаружили, что на возражения Юкавы и Гейзенберга можно было ответить с помощью струнной теории поля. Когда мы вызывали колебания струны, они распространялись по струне со скоростью меньшей, чем скорость света.
Но скоро мы зашли в тупик. При попытке ввести взаимодействующие струны мы не могли корректно воспроизвести амплитуду Венециано. Дуальность и счёт кривых, приведённый Фейнманом для любой теории поля, находились в состоянии прямого конфликта. Как и полагали критики, некорректными оказались диаграммы Фейнмана. Этот результат обескураживал. Всё говорило о том, что теория поля, последний век служившая фундаментом для физики, принципиально несовместима с теорией струн.
Помню, как я, разочарованный, до поздней ночи ломал голову над этой задачей. Несколько часов подряд я методично проверял возможные альтернативные решения. И неизменно приходил к выводу, что они противоречат дуальности. Тогда я вспомнил слова Шерлока Холмса, обращённые к Ватсону в повести Артура Конан Дойля «Знак четырёх»: «Сколько раз я говорил вам: если отбросить невозможное, то, что останется, пусть даже
Я поспешно взял бумагу и погрузился в расчёты. Следующие пять часов я провёл проверяя и перепроверяя вычисления по всем возможным направлениям. Вывод оказался однозначным: теория поля действительно опровергает дуальность, как и следовало ожидать, тем не менее она приемлема, так как в конечном итоге воспроизводит формулу Венециано — Судзуки.
Задача была почти решена. Оставалась лишь одна диаграмма Фейнмана, соответствующая столкновению четырёх струн. В том году я читал вводный курс электричества и магнетизма студентам Городского университета Нью-Йорка, и мы с ними изучали силовые линии Фарадея. Я предлагал студентам нарисовать силовые линии вокруг зарядов различной конфигурации, повторяя действия, которые первым проделал Фарадей в XIX в. Внезапно до меня дошло: волнистые линии, которые я просил нарисовать студентов, имеют ту же топологическую структуру, что и столкновение струн. Таким образом, рассматривая заряды в студенческой лаборатории, я нашёл точную конфигурацию для столкновения четырёх струн.
Неужели всё так просто?
Я поспешил домой, чтобы проверить свою догадку, и убедился, что прав. Применяя метод наглядных изображений, доступный даже студенту-первокурснику, я мог продемонстрировать, что взаимодействие четырёх струн скрывается в формуле Венециано. К зиме 1974 г. мы с Киккава, пользуясь методами, восходящими ещё к временам Фарадея, закончили разработку струнной теории поля — первой удачной попытки сочетать теорию струн с математическим аппаратом теории поля.
Наша теория поля была далека от совершенства, хотя точно воспроизводила всю информацию, относящуюся к теории струн. Поскольку мы строили теорию поля, двигаясь в обратном порядке, многие симметрии остались неопределёнными. К примеру, симметрии специальной теории относительности присутствовали, но в неявном виде. Требовалось поработать, чтобы упростить найденные нами уравнения поля. Но, едва мы начали исследовать свойства нашей теории поля, в модели вдруг обнаружился серьёзный изъян.