В целом жизнь Римана была непрерывной чередой препятствий и бед, преодолевать которые удавалось с огромным трудом и напряжением и без того небольших сил. За каждым триумфом следовали фиаско и трагедия. Едва фортуна улыбнулась ему и он приступил к учёбе у Гаусса, как Германию захлестнула волна революции. Рабочий класс, долго терпевший нечеловеческие условия жизни и труда, восстал против правительства, рабочие городов по всей Германии взялись за оружие. Эти демонстрации и волнения начала 1848 г. стали источником вдохновения для ещё одного известного гражданина Германии — Карла Маркса и оказали заметное влияние на развитие революционного движения в Европе в последующие годы.
Когда волнения охватили всю Германию, учёба Римана прервалась. Его зачислили в студенческий отряд, где он удостоился сомнительной чести в течение 16 утомительных часов охранять особу, напуганную гораздо сильнее её охранников, — короля, который трясся от страха в своём берлинском дворце, пытаясь укрыться от гнева рабочего класса.
За рамками евклидовой геометрии
Революционные бури бушевали не только в Германии, но и в сфере математики. Вопросом, которым заинтересовался Риман, стало неизбежное падение ещё одного бастиона, авторитет которого ранее был непререкаем, — евклидовой геометрии, рассматривающей пространство как трёхмерное. Более того, это пространство не только трёхмерное, но и «плоское» (на плоскости кратчайшее расстояние между двумя точками — прямая; исключается сама возможность, что пространство может быть изогнутым, как в случае со сферой).
Пожалуй, евклидовы «Начала» можно назвать наиболее влиятельной (после Библии) книгой всех времён. На протяжении двух тысячелетий проницательнейшие умы западной цивилизации восхищались ясностью мысли и красотой геометрических построений. Тысячи прекрасных соборов Европы были воздвигнуты согласно принципам этой книги. Оглядываясь назад, можно отметить, что успех «Начал» был чересчур велик. С течением веков она стала своего рода религией; к каждому, кто осмеливался предложить искривлённое пространство или многомерность, относились как к безумцу или еретику. Бесчисленные множества поколений школьников сражались с теоремами евклидовой геометрии: длина окружности в π раз превосходит её диаметр, сумма углов треугольника составляет 180º. Но как ни бились веками самые светлые умы математики, им не удавалось найти доказательства обманчиво простых постулатов. В конце концов до европейских математиков начало доходить, что даже евклидовым «Началам», чтимым на протяжении 2300 лет, недостаёт полноты. Евклидова геометрия по-прежнему приемлема, если речь идёт о плоских поверхностях, но в мире изогнутых поверхностей она неверна.
С точки зрения Римана, евклидова геометрия особенно бесплодна, если её сравнить с поразительным многообразием мира. Нигде в природе мы не встречаем плоских, идеальных геометрических фигур Евклида. Горные цепи, океанские волны, облака, водовороты — отнюдь не правильные круги, треугольники и квадраты, а объекты с криволинейными поверхностями, количество изгибов которых поражает бесконечным разнообразием.
Время для революции наступило. Но кто возглавит её и что придёт на смену прежней геометрии?
Появление римановой геометрии
Риман восставал против мнимой математической точности греческой геометрии, фундамент которой, как он обнаружил, покоится на зыбучих песках интуиции и здравого смысла, а не на твёрдой почве логики.
Согласно Евклиду, у точки вообще нет измерения. У линии одно измерение — длина. У плоскости — два: длина и ширина. У тела — три: длина, ширина и высота. На этом всё и заканчивается. Нет ничего, что имело бы четыре измерения. Эти утверждения эхом повторял философ Аристотель, вероятно, первым в мире категорически заявивший, что четвёртое пространственное измерение невозможно. В трактате «О небе» он писал: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трёх — тело, и, кроме них, нет никакой другой величины, так как три суть всё». Более того, в 150 г. н. э. астроном Птолемей из Александрии пошёл дальше Аристотеля и в своём труде «О расстояниях» предложил первое оригинальное «доказательство» невозможности четвёртого измерения.
Сначала, предлагал он, проведём три взаимно перпендикулярные линии. Например, угол куба представляет собой три линии, перпендикулярные друг другу. Затем попробуем провести четвёртую линию, перпендикулярную остальным трём. Как бы мы ни старались, утверждает Птолемей, провести четвёртый перпендикуляр невозможно. По мнению Птолемея, четвёртую перпендикулярную линию «нельзя измерить и определить». Таким образом, четвёртое измерение невозможно.