Основная проблема, с которой столкнулась теория суперструн, заключается в следующем:
Гросс предупреждает: хотя некоторые из этих решений очень близки к Стандартной модели, другие дают нежелательные физические свойства: «Несколько смущает то, что при обилии возможных решений у нас нет надёжного способа делать выбор среди них. Вдобавок к многочисленным желательным свойствам эти решения имеют несколько потенциально катастрофических свойств»{93}. Непосвящённый, услышав об этом впервые, наверняка озадачится и спросит: почему бы не произвести вычисления и не посмотреть, какое решение предпочтительно для струны? Поскольку теория струн чётко определена, недоумение вызывает то, что физики не в состоянии вычислить ответ.
Проблема в том, что теория возмущений, один из главных инструментов в физике, в данном случае бесполезна. Теория возмущений (которая учитывает всё более малые квантовые поправки) не в состоянии разложить десятимерную теорию на четыре и шесть измерений. Так что мы вынуждены пользоваться непертурбативными методами, печально известными своей сложностью в применении. По этой причине мы и не можем найти решение для теории струн. Как уже говорилось ранее, струнная теория поля, разработанная мной и Киккава и усовершенствованная Виттеном, в настоящее время несовместима с непертурбативными методами. Настолько умных не нашлось.
Однажды моим соседом был аспирант-историк. Помню, как-то раз он предостерёг меня, сказав, что компьютерная революция в конце концов может лишить физиков работы: «Ведь компьютер может вычислить что угодно, верно?» С его точки зрения, это был лишь вопрос времени: математики заложат все вопросы физики в компьютер, и физики выстроятся в очередь на биржу труда.
Этим замечанием он огорошил меня, так как для физика компьютер — не что иное, как усовершенствованный арифмометр, безупречный и безмозглый. Недостаток интеллекта он возмещает скоростью. Надо заложить теорию в компьютер, прежде чем он сможет провести вычисления. Разрабатывать новые теории самостоятельно компьютер не в состоянии.
Мало того, даже если теория известна, компьютеру может потребоваться бесконечно долгое время для решения задачи. В сущности, вычисления, относящиеся к вопросам, которые представляют наибольшей интерес для физиков, занимают уйму компьютерного времени. В этом и заключается проблема с теорией струн. Хотя Вафа и его коллеги предложили миллионы возможных решений, понадобилось бы бесконечное количество времени, чтобы определить, какой из миллиона возможных вариантов верен, или же выполнить для квантовых задач вычисления, в которые входит замысловатый процесс туннелирования — один из квантовых феноменов, представляющих особую трудность при расчётах.
Туннелирование в пространстве и времени
В конечном счёте мы задаёмся тем же вопросом, что и Калуца в 1919 г., — куда девалось пятое измерение? — только на более высоком уровне. Как указывал Клейн в 1926 г., ответ на этот вопрос имеет отношение к квантовой теории. Туннелирование — возможно, самое поразительное (и сложное) явление в ней.
К примеру, сейчас я сижу в кресле. Представлять себе, как моё тело вдруг проходит между молекулами ближайшей стены и вновь становится единым целым в чужой гостиной, довольно неприятно. К тому же это маловероятно. А квантовая механика утверждает, что существует конечная вероятность (хоть она и мала), что даже самые невероятные, немыслимые события — например, проснувшись однажды утром, обнаружить свою кровать посреди джунглей Амазонки — на самом деле произойдут. Любые события, независимо от их правдоподобия, квантовая теория сводит к вероятностям.