И в-третьих, результаты согласовывались с так называемой
До сотворения: орбиобразие?
Результаты, полученные со спутника СОВЕ, позволили физикам с уверенностью утверждать, что им понятно происхождение Вселенной вплоть до малой доли секунды после Большого взрыва. Но нас по-прежнему ставят в тупик вопросы о том, что предшествовало Большому взрыву и почему он произошел. Общая теория относительности дает в конечном итоге бессмысленные результаты. Поняв, что общая теория относительности просто не работает при очень малых расстояниях, Эйнштейн пытался расширить теорию до более всеобъемлющей, способной объяснить этот феномен.
Мы полагаем, что в момент Большого взрыва преобладающей силой, превосходящей гравитацию, являются квантовые эффекты. Следовательно, ключ к истокам Большого взрыва – квантовая теория гравитации. На данный момент единственная теория, претендующая на разрешение загадки событий, предшествующих Большому взрыву, – десятимерная теория суперструн. В настоящее время ученые строят догадки о том, как десятимерная Вселенная разделилась на четырех– и шестимерную. Как выглядит Вселенная, парная нашей?
Один из физиков, занятых поиском ответов на эти космические вопросы, – Камран Вафа, гарвардский профессор, потративший несколько лет на изучение возможного процесса разделения нашей десятимерной Вселенной на две вселенных меньшего размера. Парадокс, но сам Вафа тоже разрывается между двумя мирами: он живет в Кембридже, Массачусетс, но родом из Ирана, откуда был вынужден уехать в связи с политическими катаклизмами последнего десятилетия. С одной стороны, он мечтает в конце концов вернуться на родину, в Иран, – возможно, после того как прекратятся гражданские волнения. С другой стороны, исследования уводят его от этого очага напряженности к дальним границам шестимерного пространства, к тому моменту, когда состояние Вселенной, охваченной хаосом, еще не успело стабилизироваться.
«Представим себе простую видеоигру», – предлагает Вафа. Ракета может перемещаться по экрану, пока не достигнет правого края. Всякий любитель видеоигр знает, что после этого ракета внезапно появляется с левого края экрана точно на такой же высоте. А если ракета залетит слишком далеко и уйдет за границу нижнего края экрана, то вновь материализуется в его верхней части. Таким образом, объясняет Вафа, на этом экране – полностью замкнутая вселенная. Вы никогда не покидаете вселенную, ограниченную экраном. Однако большинство подростков не задается вопросом о том, какую форму на самом деле имеет вселенная. Вафа указывает на удивительный факт: топологически экран устройства для видеоигр – внутренняя поверхность трубы!
Представим себе экран в виде листа бумаги. Поскольку углы в верхней части экрана идентичны углам в нижней части, можно склеить вместе верх и низ экрана. Мы свернули лист бумаги в трубку. Углы правого края трубки точно такие же, как углы левого края. Единственный способ соединить два конца получившейся трубки – осторожно согнуть ее в кольцо и склеить открытые концы вместе (рис. 9.2).
Мы превратили лист бумаги в фигуру, похожую на бублик. Можно сказать, что ракета, перемещающаяся по экрану в видеоигре, движется по внутренней поверхности трубки. Всякий раз, когда ракета исчезает с экрана и вновь появляется с другой стороны, это соответствует пересечению ракетой склеенного стыка внутри трубки.
Вафа предполагает, что сестра нашей Вселенной имеет форму своего рода искривленного шестимерного тора. Вафа и его коллеги первыми выдвинули предположение, согласно которому сестру нашей Вселенной можно описать так называемым
Представить себе орбиобразие поможет перемещение на 360º по кругу. Ясно, что в результате такого движения мы вернемся в исходную точку. Другими словами, если мы протанцуем круг 360º в хороводе, то вернемся к тому же месту, с которого начали. Но если в орбиобразии мы проделаем путь менее 360º, то все равно вернемся в исходную точку. Это утверждение может показаться абсурдным, тем не менее сконструировать орбиобразие легко. Представьте себе флатландцев, живущих на конусе. Если они проделают путь менее 360º вокруг вершины конуса, то прибудут в исходную точку. Таким образом, орбиобразие – многомерное обобщение конуса (рис. 9.3).